Weka 分类树输出结果解析 Weighted.avg

本文介绍了如何解析Weka中使用J48分类树进行10-Folds交叉验证的结果。Classifier部分显示采用了递归分治策略的J48算法,而cross-validation和percentagesplit分别对应验证方式和数据分割比例。输出部分如yes(9/3)(5/2)展示了训练和测试集中不同类别的分布。weighted.Avg如Precision的计算方式是加权平均,表示各类别的准确率。文章还提供了理解混淆矩阵和评估指标的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是对weka分类树的结果解释,集合了其它的博文

我们使用的是weka自带的weather数据库
在这里插入图片描述

在这里插入图片描述

先看左侧,
classifier是分类方法,J48是递归分治策略;
cross-validation表示交叉验证,使用了10-Folds
percentage split 表示分割比例,用以分割训练集和测试集(猜的)
再看看output,yes(9/3)(5/2) 表示训练集里3个no,测试集里2个no(猜的x2)
其他的:
百度文库里挺好,对照着来
在这里插入图片描述

说明一下weighted.Avg, 以Precision为例,判别为Yes的准确率为8/(8+5)–见混同矩阵,判别为No的准确率为0;所以weight.Avg 就是加权平均 = 8/13 * 13/14 = 0.571

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值