20、基于改进卷积神经网络的基因表达血癌分类方法

基于改进卷积神经网络的基因表达血癌分类方法

1. 引言

微阵列技术领域的新兴技术有助于学者同时测定多个基因,从而获得有关细胞功能的重要信息。这些信息可用于癌症的预后和诊断。然而,由于存在噪声,从大型数据集中提取基因表达特征以及进行基因选择过程仍然是一项具有挑战性的任务。为了克服这一困难,需要一种能够选择具有高分类准确率的合适基因集的技术。

这种技术不仅可以节省计算成本,还能让医生识别出与特定癌症在生物学上相关的一小部分基因。此外,有效的方法有助于癌症患者的早期诊断和药物检测。正常血液和白血病血液样本的情况如下:血液细胞由血浆以及三种不同的细胞(白细胞、红细胞和血小板)组成,每种细胞都有不同的功能。红细胞将氧气从肺部输送到组织,反之亦然;白细胞负责抵抗疾病;血小板负责控制出血。而白血病是一种血癌细胞,其中白细胞的生长迅速增加,并干扰血小板和红细胞的功能。白血病主要分为两类:淋巴细胞白血病(由淋巴样细胞引起)和髓细胞白血病(由髓样细胞引起)。由于这些细胞的生长迅速,因此必须立即对其进行治疗。所以,需要创建或设计一个自动化系统,以便在疾病早期进行检测。

基因选择可以通过三种不同的方法进行:
- 过滤法
- 包装法
- 嵌入法

2. 相关工作

近年来,粒子群优化(PSO)算法被研究人员广泛用于解决基因确定问题。例如,有研究分析了PSO、支持向量机(SVM)和遗传算法(GA)作为高维微阵列信息分类器的应用。还有研究提出了几何PSO,并与GA在六个不同的公共癌症数据集上进行了比较分析。另外,有研究将PSO和GA作为优化方法,SVM作为分类方法,对包括白血病、结肠癌和乳腺癌数据在内的三个基准基因表达数据集进行了研究。 <

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值