21、人工智能在血液癌症分类与双足步态分析中的应用

人工智能在血液癌症分类与双足步态分析中的应用

1. 血液癌症分类模型研究

1.1 卷积神经网络与深度学习基础

深度学习在多个领域展现出强大的能力,如计算机视觉(从图像中提取信息)、机器翻译和音频记录中的人类语音识别。卷积神经网络(CNN)与神经网络类似,由权重、神经元和偏置值组成。这些元素根据具体情况或问题来改变神经元状态,神经元接收输入,计算加权和,然后将数据传递到输出层。

1.2 血液癌症分类模型提出

研究提出了一种基于粒子群优化(PSO)特征选择方法和SRUF描述符的多卷积神经网络(MCNN)的血液癌症分类(BCC)模型,用于区分急性淋巴细胞白血病(ALL)和急性髓系白血病(AML)。通过基因表达数据集,对基于SURF的MCNN和优化后的基于SURF的MCNN进行了ALL和AML血液癌症分类的对比分析,并将该模型的模拟结果与现有工作进行了比较。

1.3 实验结果分析

1.3.1 精度对比
样本编号 基于SURF的MCNN的BCC精度 优化后基于SURF的MCNN的BCC精度
1 0.814 0.953
2 0.905 0.926
3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值