人工智能在血液癌症分类与双足步态分析中的应用
1. 血液癌症分类模型研究
1.1 卷积神经网络与深度学习基础
深度学习在多个领域展现出强大的能力,如计算机视觉(从图像中提取信息)、机器翻译和音频记录中的人类语音识别。卷积神经网络(CNN)与神经网络类似,由权重、神经元和偏置值组成。这些元素根据具体情况或问题来改变神经元状态,神经元接收输入,计算加权和,然后将数据传递到输出层。
1.2 血液癌症分类模型提出
研究提出了一种基于粒子群优化(PSO)特征选择方法和SRUF描述符的多卷积神经网络(MCNN)的血液癌症分类(BCC)模型,用于区分急性淋巴细胞白血病(ALL)和急性髓系白血病(AML)。通过基因表达数据集,对基于SURF的MCNN和优化后的基于SURF的MCNN进行了ALL和AML血液癌症分类的对比分析,并将该模型的模拟结果与现有工作进行了比较。
1.3 实验结果分析
1.3.1 精度对比
样本编号 | 基于SURF的MCNN的BCC精度 | 优化后基于SURF的MCNN的BCC精度 |
---|---|---|
1 | 0.814 | 0.953 |
2 | 0.905 | 0.926 |
3 |