nhanes和charls发文新指标生物年龄Biological Age (GOLD BioAge)

什么是生物学年龄(GOLD BioAge)
生物年龄是指与特定日历年岁预期水平相比,衡量生物体整体功能状态的指标,以反映其总体健康状况。Levine提出的表型年龄(phenotypic age)结合了九种生物标志物和日历年岁,能够比单独使用日历年岁更准确地预测死亡率。

在这里插入图片描述
在文章Gompertz Law-Based Biological Age (GOLD BioAge): A Simple and Practical Measurement of Biological Ageing to Capture Morbidity and Mortality Risks(基于 Gompertz 定律的生物年龄 (GOLD BioAge):一种简单实用的生物衰老测量方法,以捕捉发病率和死亡率风险)介绍:Gompertz定律是描述死亡率的最广泛使用的数学模型之一。它有效地捕捉了成年年龄死亡风险的显着增加,与经验死亡率数据一致。该模型的简单性和可引性使其具有广泛的应用。例如,莱文的表型年龄使用 Gompertz 模型来估计 10 年死亡风险。

作者开发了一种基于Gompertz定律的生物年龄(GOLD BioAge)算法,该算法利用了Gompertz分布的危险函数。这种方法提供了一个易于计算的线性模型,该模型结合了实际年龄和常规生物标志物,将实际年龄的偏差与疾病发病率和死亡风险联系起来。

生物年龄衡量生物体的生物功能与特定实际年龄的预期水平进行比较,以反映整体健康状况。

在这里插入图片描述
生物年龄(GOLD BioAge)计算方法:

在这里插入图片描述
生物标志物i表示第i个生物标志物,βi为其相关响应系数,β0为常数。

作者还引入了一个新指标GOLD BioAgeDiff。

GOLD BioAgeDiff作为一种新颖的衰老指标表示生物年龄与实际年龄之间的差异,以评估个体生物年龄偏离实际年龄的程度。BioAgeDiff与NHANES和UKB研究中的死亡风险相关每增加1年,其风险比(HR)分别为1.155(1.150-1.159)和1.133(1.131-1.135)。对20年随访数据的生存曲线分析显示,BioAgeDiff最高25%组别的参与者相比最低25%组别的参与者,其生存概率下降更为显著,尤其是在中老年人群中尤为明显。

在这里插入图片描述

GOLD生物年龄(BioAge)与常见慢性疾病发病率相关,如癌症、心肌梗死(MI)、心力衰竭、中风、慢性阻塞性肺病(COPD)和痴呆症。

生物年龄Biological Age (GOLD BioAge)这个指标目前比较新,发表文章很少,可以抢发一波,使用scitable包chrals.bioAge函数可以轻易提取出来,下面我简单演示一下
先导入R包和数据

setwd("E:/公众号文章2024年/charls数据库/class2/2011") #设置你放数据文件的地址
#setwd("E:/公众号文章2024年/charls数据库/class2")
library(haven)
library(tidyverse)
library(scitable)

household_roster<-read_dta('household_roster.dta')  #家庭户
family<-read_dta('family_information.dta')   #大家庭
housing<-read_dta('housing_characteristics.dta')   #房屋特点
psu<-read_dta('psu.dta',encoding = "GBK")   #psu
information<-read_dta('family_information.dta')  #家庭信息
transfer<-read_dta('family_transfer.dta')  #家庭交往
household_income<-read_dta('household_income.dta')  #家庭收入
#############3
demographic<-read_dta('demographic_background.dta')  #基线表
health_status_and_functioning<-read_dta('health_status_and_functioning.dta')  #健康状况和功能
biomarkers<-read_dta('biomarkers.dta')  #体检数据
Blood_20140429<-read_dta('Blood_20140429.dta')  #血检数据
weight<-read_dta('weight.dta')  #权重
health_care_and_insurance<-read_dta('health_care_and_insurance.dta')  #医疗保健
work_retirement<-read_dta('work_retirement_and_pension.dta')  #工作、退休、养老金

###########
data<-demographic  %>% 
  left_join(housing, by='householdID',suffix = c("", ".right")) %>%  
  left_join(household_roster, by='householdID',suffix = c("", ".right")) %>%  
  left_join(psu, by='communityID',suffix = c("", ".right")) %>%  
  left_join(health_care_and_insurance, by='ID',suffix = c("", ".right")) %>%  
  left_join(health_status_and_functioning,by='ID',suffix = c("", ".right")) %>%  
  left_join(biomarkers,by='ID',suffix = c("", ".right")) %>% 
  left_join(Blood_20140429,by='ID',suffix = c("", ".right")) %>% 
  left_join(weight,by='ID',suffix = c("", ".right")) %>% 
  left_join(information,by='ID',suffix = c("", ".right")) %>% 
  left_join(transfer,by='ID',suffix = c("", ".right")) %>% 
  left_join(household_income,by='householdID',suffix = c("", ".right")) %>% 
  left_join(work_retirement,by='ID',suffix = c("", ".right"))

直接使用

chrals.bioAge(data)

在这里插入图片描述

summary(chrals.bioAge(data))

在这里插入图片描述
提取出来后可以使用ggexplore函数进行进一步关联分析,数据挖掘。简单演示一下,先导入数据和R包,纯演示,没有实际意义

library(haven)
library(tidyverse)
library(scitable)
library(ggscitable)
setwd("E:/公众号文章2024年/scitable包配套视频/29.我整理的charls数据/2011年")
data<-read_dta('data2011.dta')
data<-as.data.frame(data)
dput(names(data))

在这里插入图片描述
定义要研究的变量

allVars<-c("age", "sex", "edu", "smoking", "married", "drink", "wc", "bmi", 
           "TC", "HDL", "weight", "LDL", "FBG", "hba1c", 
           "TYG", "Hypertension", "CVD", "chd", "work", "insurance", "consumption", 
           "pension", "frailty2011", 
           "fuels2011", "PEF2011", "cancer", "liver", "stroke", "kidney", 
           "stomach", "chronic", "chronic2", "emotional", "memory", "arthritis", 
           "asthma", "heart", "restriction", "CESD", "activities", "intellectual", 
           "cognition", "spirit", "AIP","bioAge")

整理数据格式

out<-organizedata2(data = data,allVars = allVars,family=family,username=username,token=token,explore = T)
data<-out[["data"]]
fvars<-out[["factorvarout"]]
allVars<-out[["allVars"]]

使用ggexplore挖掘数据相关性

var<-allVars
ggexplore(data = data,x="AIP",y=var)

生成了很多图片,我随便选几张,P小于0.05表明两者之间有关联

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天桥下的卖艺者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值