【NLP理论】——为什么需要mask

本文探讨了在自然语言处理(NLP)中,为了统一输入数据长度而进行的PAD操作可能带来的问题,包括对mean-pooling、max-pooling和attention机制的影响,并提出了通过mask技术解决这些问题的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. PAD的问题

通常在训练NLP模型时,batch中的句子长度不相等,这个时候会对没有达到规定长度的句子会进行pad操作(一般用0进行pad),如下图所示(绿色是进行pad的部分):
在这里插入图片描述
但是PAD会引起以下几个问题。

1.1 mean-pooling的问题

如上图所示,对于矩阵:
a=[3,7,11,2,1,8,5]a = [3, 7, 11, 2, 1, 8, 5]a=[3,7,11,2,1,8,5]
a进行mean-pooling
mean_a=3+7+11+2+1+8+57=5.2857 mean\_a=\frac{3+7+11+2+1+8+5}{7}=5.2857 mean_a=73+7+11+2+1+8+5=5.2857
进行pad之后:
pad_a=[3,7,11,2,1,8,5,0,0,0] pad\_a=[3, 7, 11, 2, 1, 8, 5, 0, 0, 0] pad_a=[3,7,11,2,1,8,5,0,0,0]
pad_a进行mean-pooling
mean_pad_a=3+7+11+2+1+8+510=3.7 mean\_pad\_a=\frac{3+7+11+2+1+8+5}{10}=3.7 mean_pad_a=103+7+11+2+1+8+5=3.7
对比mean_amean_pad_a发现:pad操作影响mean-pooling

1.2 max-pooling的问题

在这里插入图片描述
如上图所示,矩阵b=[−1,−3,−9,−11,−7,−2,−8]b=[-1, -3, -9, -11, -7, -2, -8]b=[1,3,9,11,7,2,8]pad之后的矩阵mean_b=[−1,−3,−9,−11,−7,−2,−8,0,0,0]mean\_b=[-1, -3, -9, -11, -7, -2, -8, 0, 0, 0]mean_b=[1,3,9,11,7,2,8,0,0,0]
分别对其进行max-pooling
max_b=−1 max\_b = -1 max_b=1
max_pad_b=0 max\_pad\_b=0 max_pad_b=0
对比max_amax_pad_a发现:pad操作影响max-pooling

1.3 attention的问题

attention技术是目前NLP任务的必备选项,在attention的计算中通常最后一步是使用softmax进行归一化操作,将数值转换为概率。但是如果直接对pad之后的向量进行softmax操作,那么pad的部分也会分摊一部分概率,这就导致有意义的部分(非pad部分)的概率之和不等于1

2. mask

mask是相对于pad而产生的技术,具备告诉模型一个向量有多长的功效。mask矩阵有如下特点:

  1. mask矩阵是与pad之后的矩阵具有相同的shape
  2. mask矩阵只有10两个值,如果值为1表示对应的pad矩阵中该位置有意义,如果值为0表示对应的pad矩阵中该位置无意义。

在第1部分中的两个向量的mask矩阵(m=[1,1,1,1,1,1,1,0,0,0]m=[1,1,1,1,1,1,1,0,0,0]m=[1,1,1,1,1,1,1,0,0,0])如下图所示:
在这里插入图片描述

2.1 解决mean_pooling的问题

mean_a=sum(pad_a⋅m)sum(m) mean\_a=\frac{sum(pad\_a \cdot m)}{sum(m)} mean_a=sum(m)sum(pad_am)

2.2 解决max_pooling的问题

在进行max_pooling时,只需要将pad的部分的值足够小即可,可以将mask矩阵中值为0的位置替换的足够小(如:10−1010^{-10}1010),则不会影响max_pooling计算。
max_b=max(pad_b−(1−m)×1010) max\_b=max(pad\_b-(1-m) \times 10^{10}) max_b=max(pad_b(1m)×1010)

2.3 解决attention的问题

该问题的解决方式跟max_pooling一样,就是将pad的部分足够小,使得exe^xex的值非常接近于0,以至于可以忽略。
softmax(x)=softmax(x−(1−m)×1010) softmax(x)=softmax(x-(1-m) \times 10^{10}) softmax(x)=softmax(x(1m)×1010)

### 关于预训练语言模型的技术细节与实现方法 #### 1. **预训练语言模型的核心概念** 预训练语言模型(Pre-trained Language Model, PLM)是一种通过大规模无监督数据集进行训练的神经网络模型,旨在捕捉通用的语言模式和结构。这种模型通常被用来初始化下游任务的具体模型权重,从而提高性能并减少标注数据需求[^1]。 #### 2. **主流预训练语言模型及其特点** ##### (1)**ELMo (Embeddings from Language Models)** ELMo 是一种上下文相关的词嵌入方法,它通过对整个句子建模生成动态的词向量表示。具体来说,ELMo 使用双向 LSTM 来提取前向和后向的信息流,并将其组合成最终的词向量表示[^2]^。 ```python import tensorflow_hub as hub elmo = hub.KerasLayer("https://tfhub.dev/google/elmo/3", trainable=True) embedding = elmo(["This is a test sentence."]) print(embedding.shape) ``` 上述代码展示了如何使用 TensorFlow Hub 调用 ELMo 模型以获得句子的上下文相关嵌入。 ##### (2)**GPT (Generative Pre-trained Transformer)** GPT 系列模型采用自回归的方式生成文本,即每次只预测下一个单词的概率分布。其核心架构基于 Transformer 的解码器部分,支持灵活的因果掩蔽机制以便更好地模拟人类写作习惯[^2]^。 ```python from transformers import GPT2Tokenizer, GPT2LMHeadModel tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2LMHeadModel.from_pretrained('gpt2') input_ids = tokenizer.encode("Hello world!", return_tensors='pt') output = model.generate(input_ids=input_ids, max_length=50) print(tokenizer.decode(output[0])) ``` 这里提供了一种简单的方法来加载并运行 GPT-2 模型完成续写操作。 ##### (3)**BERT (Bidirectional Encoder Representations from Transformers)** 不同于 GPT 的单向性,BERT 设计为完全双向编码器结构,这意味着它可以同时考虑左侧和右侧的内容来进行当前时刻的状态更新。为了达成这一点,引入了 Masked Language Modeling (MLM) 技术——随机遮挡一定比例的输入标记让模型学会推测缺失的部分[^4]^。 ```python from transformers import BertTokenizer, TFBertForMaskedLM tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertForMaskedLM.from_pretrained('bert-base-uncased') sentence = "The capital of France is [MASK]." inputs = tokenizer(sentence, return_tensors="tf") logits = model(inputs).logits predicted_token_id = tf.argmax(logits[0, 5], axis=-1).numpy() print(tokenizer.decode([predicted_token_id])) # Output should be 'Paris' ``` 这段示例说明了如何运用 BERT 对指定位置处的空白填充值作出合理猜测。 #### 3. **技术挑战与优化方向** 尽管现有预训练语言模型已经非常强大,但仍存在一些亟待解决的问题: - **计算资源消耗巨大**:由于需要处理海量的数据以及维护超大规模参数量级的网络体系,导致训练成本极高[^1]^。 - **跨模态融合难题**:虽然目前大多数工作集中于纯文本领域,但在实际应用场景中往往还需要结合图像或其他感官信号共同发挥作用[^3]^。 - **微调阶段过拟合风险**:当面对小型定制化子任务时,直接迁移大型通用基线可能会引发严重的过拟合现象[^4]^。 为此,学术界持续探索诸如轻量化版本构建、增量式学习路径规划等方面的创新思路。 --- ### 结论 综上所述,预训练语言模型已经成为现代自然语言处理不可或缺的一部分,无论是理论层面还是工程实践方面均展现出卓越潜力。未来的研究重点可能围绕降低能耗开销、促进多源信息交互等方面展开进一步挖掘。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值