Triangle 分类: Leetcode(动态规划) ...

本文详细解析了在三角形网格中寻找从顶到底部的最小路径和问题,通过动态规划算法,逐步展示如何计算每一步的最小路径总和,最终得到整个三角形的最小路径值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Triangle


Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

最简单的动态规划题目
状态方程: A[i-1][j]  = min(A[i+1][j] ,A[i+1][j+1])

class Solution {
public:
    int minimumTotal(vector<vector<int> > &triangle) {
        for ( int i =triangle.size() -2; i >=0; --i) {
            for (int j = 0; j < i+1; ++j) {
                triangle[i][j] += min(triangle[i+1][j], triangle[i+1][j+1]);
            }
        }
        return triangle[0][0];
        
    }
};


版权声明:本文为博主原创文章,未经博主允许不得转载。

转载于:https://www.cnblogs.com/learnordie/p/4656937.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值