13、奇异值分解的计算方法

奇异值分解的计算方法

1. 对称矩阵特征值计算的 QR 算法

在计算对称矩阵特征值时,若使用特定的位移 $a_{(m - 1)n,n}$,在大多数情况下能实现快速收敛,使矩阵 $A_m$ 达到如下形式:
$A_m =
\begin{bmatrix}
T_m & 0 \
0^T & \lambda
\end{bmatrix}$
其中,$T_m \in R^{(n - 1)×(n - 1)}$ 是三对角对称矩阵,$\lambda$ 是 $A_1$ 的一个特征值。这种情况下,可采用收缩(deflation)的方法,将带位移的 QR 算法聚焦于 $(n - 1)×(n - 1)$ 的前主子矩阵 $T_m$。

以下是计算 $n×n$ 对称矩阵特征值的最终算法:

算法 15:带位移的 QR 算法

  • 输入 :$A = A^T \in R^{n×n}$。
  • 输出 :近似特征值和特征向量。
    1. 将 $A$ 约化为三对角形式。
    2. 对于 $k = n$ 到 $2$ 执行以下操作:
    • 当 $|a_{k - 1,k}| > \epsilon$ 时:
      • 计算 $QR = A - a_{kk}I$。
      • 设置 $A := RQ + a_{kk}I$。
      • 记录特征值 $\lambda_k = a_{kk}$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值