1. Matplotlib 数据可视化

本文为Matplotlib数据可视化的Day1教程,主要介绍了Matplotlib的基本概念和简单绘图示例。内容涵盖Matplotlib的用途,安装,简单的绘图操作,包括OO模式和pyplot模式的接口使用,以及通用的绘图模板。通过学习,读者能快速掌握matplotlib进行数据可视化的基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Matplotlib 数据可视化 Day1



前言

主要参考资料 Datawhale开源资料Matplotlib用户指南


一、初识Matplotlib

  • Matplotlib是一个Python 2D绘图库,用来绘制各种静态,动态,交互式的图表。

  • Matplotlib可用于Python脚本,Python和IPython Shell、Jupyter notebook,Web应用程序服务器和各种图形用户界面工具包等。

  • Matplotlib是强大的python数据可视化工具,我们所熟知的pandas和seaborn的绘图接口其实也是基于matplotlib所作的高级封装。
    在这里插入图片描述

二、简单的绘图示例

1.安装Matplotlib

python -m pip install matplotlib

2.引入库及绘图

  • Matplotlib的图像是画在figure上的,每一个figure又包含了一个或多个axes(一个可以指定坐标系的子区域)。
  • 创建figure以及axes的方式是通过pyplot.subplots命令,创建axes以后,可用Axes.plot绘图。
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 2 * np.pi, 200)
y = np.sin(x)

fig, ax = plt.subplots() # 创建一个包含一个axes的figure
ax.plot(x, y) # 绘制图像
plt.show()

在这里插入图片描述

代码运行后自动打印出类似<matplotlib.lines.Line2D at 0x23155916dc0>这样一段话,这是因为matplotlib的绘图代码默认打印出最后一个对象。如果不想显示这句话,有以下三种方法:

  1. 在代码块最后加一个分号;
  2. 在代码块最后加一句plt.show()
  3. 在绘图时将绘图对象显式赋值给一个变量,如将plt.plot([1, 2, 3, 4]) 改成line =plt.plot([1, 2, 3, 4])

三、Figure的组成

  • 一个完整的matplotlib图像通常会包括以下四个层级,也被称为容器(container)。
  • 在matplotlib的世界中,通过各种命令方法来操纵图像中的每一个部分,从而达到数据可视化的最终效果。

Figure:顶层级,用来容纳所有绘图元素

Axes:matplotlib宇宙的核心,容纳了大量元素用来构造一幅幅子图,一个figure可以由一个或多个子图组成

Axis:axes的下属层级,用于处理所有和坐标轴,网格有关的元素

Tick:axis的下属层级,用来处理所有和刻度有关的元素

四、绘图接口

matplotlib提供了两种最常用的绘图接口

1.OO模式

  • 显式创建图形(figure)和轴(axes),并在它们上调用方法,也被称为OO模式(object-oriented style)
  • 通过plt.subplot()命令来创建Figure和Axes,然后再对axes进行数据的绑定
x = np.linspace(0, 2, 100)

fig
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值