AtCoder ABC169

可惜没打成这场,要不然应该可以AK的/kk/fad

E

有一个数列{xi}\{x_i\}{xi},满足li≤xi≤ril_i\leq x_i\leq r_ilixiri,现在对于给定的li,ril_i,r_ili,ri,求这个数列的中位数可能有多少种不同的情况

这道题还是比较好想的,一个点能否成为中位数,就是他左边和右边的xix_ixi的数量相同

我们对于左端点和右端点进行排序,就可以找到他的范围了

注意对于奇数和偶数进行分类讨论

#include <bits/stdc++.h>
using namespace std;

# define Rep(i,a,b) for(int i=a;i<=b;i++)
# define _Rep(i,a,b) for(int i=a;i>=b;i--)
# define RepG(i,u) for(int i=head[u];~i;i=e[i].next)

typedef long long ll;

const int N=2e5+5;

template<typename T> void read(T &x){
   x=0;int f=1;
   char c=getchar();
   for(;!isdigit(c);c=getchar())if(c=='-')f=-1;
   for(;isdigit(c);c=getchar())x=(x<<1)+(x<<3)+c-'0';
    x*=f;
}

int n;
int l[N],r[N];
int p,q;

int main()
{
    read(n);
    Rep(i,1,n)read(l[i]),read(r[i]);
    sort(l+1,l+n+1);
    sort(r+1,r+n+1);
    if(n%2==0){
        p=l[n>>1]+l[(n>>1)+1],q=r[n>>1]+r[(n>>1)+1];
        printf("%d\n",q-p+1);
    }
    else{
        p=l[n+1>>1],q=r[n+1>>1];
        printf("%d\n",q-p+1);
    }
    return 0;
}

F

现在有一个长度为nnn的序列{ai}\{a_i\}{ai}
设全集U={1,2,3,⋯ ,n}U=\{1,2,3,\cdots ,n\}U={1,2,3,,n}TTTUUU的一个非空子集,现在定义f(T)f(T)f(T)表示不同的TTT的非空子集PPP的个数,是的∑aPi=S\sum a_{P_i}=SaPi=S
现在对于每一个TTT,求∑f(T)\sum f(T)f(T)

n,S,ai≤3000n,S,a_i\leq 3000n,S,ai3000

首先考虑如果T=UT=UT=U的时候怎么求

非常的简单,就是一个非常朴素的背包
我们用f[i][j]f[i][j]f[i][j]表示前iii个数,和为jjj的方案数,那么有f[i][j]=f[i−1][j]+f[i−1][j−x[i]]f[i][j]=f[i-1][j]+f[i-1][j-x[i]]f[i][j]=f[i1][j]+f[i1][jx[i]]

显然我们需要更改一下状态:f[i][j]f[i][j]f[i][j]表示由前iii个数组成的所有集合中,选出和为jjj的方案数总和
那么怎么求出每一个集合的方法呢?
我们把最开始的转移看成两部分

  • f[i−1][j]f[i-1][j]f[i1][j]转移过来,此时我们求和时不选xix_ixi,那么也就是说,不管我们的集合里面选不选iii,这个方案一直都在,所以这时候的转移量应该是f[i−1][j]×2f[i-1][j]\times 2f[i1][j]×2
  • f[i−1][j−x[i]]f[i-1][j-x[i]]f[i1][jx[i]],这个时候我们必须选择xix_ixi,所以他应该算到答案的集合里面必须有iii,所以方案数不变

那么我们的转移就变成了f[i][j]=f[i−1][j]×2+f[i−1][j−x[i]]f[i][j]=f[i-1][j]\times2+f[i-1][j-x[i]]f[i][j]=f[i1][j]×2+f[i1][jx[i]]

初值f[0][0]=1f[0][0]=1f[0][0]=1

答案f[n][S]f[n][S]f[n][S]

然后就轻松通过了qwq

#include <bits/stdc++.h>
using namespace std;

# define Rep(i,a,b) for(int i=a;i<=b;i++)
# define _Rep(i,a,b) for(int i=a;i>=b;i--)
# define RepG(i,u) for(int i=head[u];~i;i=e[i].next)

typedef long long ll;

const int N=3005;
const int mod=998244353;

template<typename T> void read(T &x){
   x=0;int f=1;
   char c=getchar();
   for(;!isdigit(c);c=getchar())if(c=='-')f=-1;
   for(;isdigit(c);c=getchar())x=(x<<1)+(x<<3)+c-'0';
    x*=f;
}

int n,m;
int a[N];
int f[N][N];
int mi[N];

int main()
{
    read(n),read(m);
    Rep(i,1,n)read(a[i]);
    f[0][0]=1;
    Rep(i,1,n){
        Rep(j,0,m){
            f[i][j]=f[i-1][j]*2%mod;
            if(j>=a[i])f[i][j]+=f[i-1][j-a[i]],f[i][j]%=mod;
        }
    }
    printf("%d\n",f[n][m]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值