可惜没打成这场,要不然应该可以AK的/kk/fad
E
有一个数列{xi}\{x_i\}{xi},满足li≤xi≤ril_i\leq x_i\leq r_ili≤xi≤ri,现在对于给定的li,ril_i,r_ili,ri,求这个数列的中位数可能有多少种不同的情况
这道题还是比较好想的,一个点能否成为中位数,就是他左边和右边的xix_ixi的数量相同
我们对于左端点和右端点进行排序,就可以找到他的范围了
注意对于奇数和偶数进行分类讨论
#include <bits/stdc++.h>
using namespace std;
# define Rep(i,a,b) for(int i=a;i<=b;i++)
# define _Rep(i,a,b) for(int i=a;i>=b;i--)
# define RepG(i,u) for(int i=head[u];~i;i=e[i].next)
typedef long long ll;
const int N=2e5+5;
template<typename T> void read(T &x){
x=0;int f=1;
char c=getchar();
for(;!isdigit(c);c=getchar())if(c=='-')f=-1;
for(;isdigit(c);c=getchar())x=(x<<1)+(x<<3)+c-'0';
x*=f;
}
int n;
int l[N],r[N];
int p,q;
int main()
{
read(n);
Rep(i,1,n)read(l[i]),read(r[i]);
sort(l+1,l+n+1);
sort(r+1,r+n+1);
if(n%2==0){
p=l[n>>1]+l[(n>>1)+1],q=r[n>>1]+r[(n>>1)+1];
printf("%d\n",q-p+1);
}
else{
p=l[n+1>>1],q=r[n+1>>1];
printf("%d\n",q-p+1);
}
return 0;
}
F
现在有一个长度为nnn的序列{ai}\{a_i\}{ai}
设全集U={1,2,3,⋯ ,n}U=\{1,2,3,\cdots ,n\}U={1,2,3,⋯,n},TTT为UUU的一个非空子集,现在定义f(T)f(T)f(T)表示不同的TTT的非空子集PPP的个数,是的∑aPi=S\sum a_{P_i}=S∑aPi=S
现在对于每一个TTT,求∑f(T)\sum f(T)∑f(T)n,S,ai≤3000n,S,a_i\leq 3000n,S,ai≤3000
首先考虑如果T=UT=UT=U的时候怎么求
非常的简单,就是一个非常朴素的背包
我们用f[i][j]f[i][j]f[i][j]表示前iii个数,和为jjj的方案数,那么有f[i][j]=f[i−1][j]+f[i−1][j−x[i]]f[i][j]=f[i-1][j]+f[i-1][j-x[i]]f[i][j]=f[i−1][j]+f[i−1][j−x[i]]
显然我们需要更改一下状态:f[i][j]f[i][j]f[i][j]表示由前iii个数组成的所有集合中,选出和为jjj的方案数总和
那么怎么求出每一个集合的方法呢?
我们把最开始的转移看成两部分
- 从f[i−1][j]f[i-1][j]f[i−1][j]转移过来,此时我们求和时不选xix_ixi,那么也就是说,不管我们的集合里面选不选iii,这个方案一直都在,所以这时候的转移量应该是f[i−1][j]×2f[i-1][j]\times 2f[i−1][j]×2
- 从f[i−1][j−x[i]]f[i-1][j-x[i]]f[i−1][j−x[i]],这个时候我们必须选择xix_ixi,所以他应该算到答案的集合里面必须有iii,所以方案数不变
那么我们的转移就变成了f[i][j]=f[i−1][j]×2+f[i−1][j−x[i]]f[i][j]=f[i-1][j]\times2+f[i-1][j-x[i]]f[i][j]=f[i−1][j]×2+f[i−1][j−x[i]]
初值f[0][0]=1f[0][0]=1f[0][0]=1
答案f[n][S]f[n][S]f[n][S]
然后就轻松通过了qwq
#include <bits/stdc++.h>
using namespace std;
# define Rep(i,a,b) for(int i=a;i<=b;i++)
# define _Rep(i,a,b) for(int i=a;i>=b;i--)
# define RepG(i,u) for(int i=head[u];~i;i=e[i].next)
typedef long long ll;
const int N=3005;
const int mod=998244353;
template<typename T> void read(T &x){
x=0;int f=1;
char c=getchar();
for(;!isdigit(c);c=getchar())if(c=='-')f=-1;
for(;isdigit(c);c=getchar())x=(x<<1)+(x<<3)+c-'0';
x*=f;
}
int n,m;
int a[N];
int f[N][N];
int mi[N];
int main()
{
read(n),read(m);
Rep(i,1,n)read(a[i]);
f[0][0]=1;
Rep(i,1,n){
Rep(j,0,m){
f[i][j]=f[i-1][j]*2%mod;
if(j>=a[i])f[i][j]+=f[i-1][j-a[i]],f[i][j]%=mod;
}
}
printf("%d\n",f[n][m]);
return 0;
}