UOJ422. 【集训队作业2018】小Z的礼物 [min-max容斥,插头DP]

本文探讨了UOJ上的一道竞赛题目,通过min-max容斥原理解决礼物分配问题,采用插头DP方法进行状态转移,记录合法方案数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UOJ

思路

由于没有代码和AC记录的支撑,以下思路可能有错。

看到全部取完,大概可以想到min-max容斥。

由于期望的表达式里面合法方案的个数是在分母里面的,所以可以想到把它记录在状态里。

然而由于我菜,一开始只想到逐列DP,于是复杂度炸了……

考虑插头DP:设\(f_{i,j,S,k}\)表示当前做到\((i,j)\),轮廓线上的状态是\(S\),已经有\(k\)个取到礼物的方案,带容斥系数的方案数。

转移想必乱搞就行了?

代码

咕咕咕

转载于:https://www.cnblogs.com/p-b-p-b/p/11618630.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值