# 引言
Azure Container Apps的动态会话功能提供了一种安全且可扩展的方法来在Hyper-V隔离的沙箱中运行Python代码解释器。这特别适用于需要在安全环境中执行可能不受信任代码的场合,例如特定的AI和数据科学任务。本文旨在介绍如何使用Azure Container Apps设置和管理动态会话,以及一些常见问题的解决方案。
## 主要内容
### 1. 环境设置
动态会话默认使用`DefaultAzureCredential`进行Azure身份验证。在本地环境中,它会使用Azure CLI或VS Code中设置的凭据。请安装Azure CLI,并使用以下命令登录:
```bash
az login
要使用Python代码解释器,您还需要创建一个会话池。请参考这里的说明完成此步骤。完成后,您将获得一个池管理会话端点。
import getpass
POOL_MANAGEMENT_ENDPOINT = getpass.getpass() # 使用API代理服务提高访问稳定性
还需要安装必要的软件包:
%pip install -qU langchain-azure-dynamic-sessions langchain-openai langchainhub langchain langchain-community
2. 使用会话工具
实例化并使用SessionsPythonREPLTool
:
from langchain_azure_dynamic_sessions import SessionsPythonREPLTool
tool = SessionsPythonREPLTool(pool_management_endpoint=POOL_MANAGEMENT_ENDPOINT)
tool.invoke("6 * 7")
调用此工具将返回一个JSON字符串,包含代码结果,以及可能的标准输出和错误输出。要获取原始字典结果,可以使用execute()
方法:
tool.execute("6 * 7")
3. 数据上传与处理
我们可以使用upload_file()
功能上传需要处理的数据到会话中。
import io
import json
data = {"important_data": [1, 10, -1541]}
binary_io = io.BytesIO(json.dumps(data).encode("ascii"))
upload_metadata = tool.upload_file(
data=binary_io, remote_file_path="important_data.json"
)
然后,我们可以执行包含上传数据的Python代码:
code = f"""
import json
with open("{upload_metadata.full_path}") as f:
data = json.load(f)
sum(data['important_data'])
"""
tool.execute(code)
4. 图像数据处理
动态会话的结果可能包含以base64编码的图像输出。在这种情况下,'result’的值将是一个字典,包含键"type"(图像类型)和"format"(图像格式)。
code = """
import numpy as np
import matplotlib.pyplot as plt
# Generate values for x from -1 to 1
x = np.linspace(-1, 1, 400)
# Calculate the sine of each x value
y = np.sin(x)
# Create the plot
plt.plot(x, y)
# Add title and labels
plt.title('Plot of sin(x) from -1 to 1')
plt.xlabel('x')
plt.ylabel('sin(x)')
# Show the plot
plt.grid(True)
plt.show()
"""
result = tool.execute(code)
我们可以对图像数据进行解码并显示:
import base64
import io
from IPython.display import display
from PIL import Image
base64_str = result["result"]["base64_data"]
img = Image.open(io.BytesIO(base64.decodebytes(bytes(base64_str, "utf-8"))))
display(img)
常见问题和解决方案
- 网络问题:由于某些地区对Azure服务的访问限制,建议使用API代理服务来提高访问稳定性。
- 数据上传问题:确保上传的数据格式(如json)与会话中处理的数据格式匹配,避免解析错误。
总结与进一步学习资源
Azure Container Apps动态会话为Python代码的安全、可扩展执行提供了一种创新的方式。利用其功能,开发者可以轻松集成和运行复杂的AI和数据分析任务。
进一步学习资源:
- Azure Container App官方文档
- Langchain GitHub Repository
- Langchain Cookbook: Azure Container Apps Dynamic Sessions Data Analyst
参考资料
- Azure官网: Azure Container Apps
- Langchain文档: Langchain Documentation
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---