电子表格中的数据清洗

文本分列:

https://support.office.com/zh-cn/article/%E4%BD%BF%E7%94%A8-%E6%96%87%E6%9C%AC%E5%88%86%E5%88%97%E5%90%91%E5%AF%BC-%E5%B0%86%E6%96%87%E6%9C%AC%E6%8B%86%E5%88%86%E4%B8%BA%E4%B8%8D%E5%90%8C%E7%9A%84%E5%88%97-30B14928-5550-41F5-97CA-7A3E9C363ED7

分隔符分列

 

转载于:https://www.cnblogs.com/Neavotre/p/10852709.html

在Python中,我们可以使用pandas库来进行Excel表格的数据清洗,因为pandas非常适合处理结构化的数据分析任务。对于文字数据清洗,可能会涉及以下几个步骤: 1. **导入数据**:首先使用`pandas.read_excel()`函数读取Excel文件到DataFrame。 ```python import pandas as pd df = pd.read_excel('example.xlsx') ``` 2. **检查缺失值**:使用`isnull()`或`notna()`检查是否有缺失值,并可以选择填充、删除或替换。 ```python # 查看缺失值 print(df.isnull().sum()) # 删除含有缺失值的行 df = df.dropna(subset=['column_name']) # 或者用特定值填充缺失值 df['column_name'] = df['column_name'].fillna(value) ``` 3. **异常值处理**:识别并处理错误的、非预期的文字数据,如格式错误、拼写错误等。可以使用正则表达式、字符串操作或自然语言处理库(如NLTK、spaCy)进行清理。 ```python # 使用正则表达式移除特殊字符 df['column_name'] = df['column_name'].str.replace(r'[^\w\s]', '') # 处理拼写错误 from spellchecker import SpellChecker spell = SpellChecker() misspelled = spell.unknown(df['column_name']) df.loc[misspelled, 'column_name'] = spell.correction(mispelled_word) ``` 4. **标准化文本**:如果需要统一大小写、去除停用词(常见词汇如“的”、“了”)、转换为小写等,可以使用相应的文本预处理技术。 ```python import string from nltk.corpus import stopwords df['column_name'] = df['column_name'].str.lower() df['column_name'] = df['column_name'].translate(str.maketrans('', '', string.punctuation)) df['column_name'] = df['column_name'].apply(lambda x: ' '.join([word for word in x.split() if word not in stopwords.words('english')])) ``` 5. **编码**:将文本数据转化为数值型或类别型,以便后续分析。这可能通过one-hot编码、标签编码或使用tf-idf等技术。 完成以上步骤后,数据清洗就基本完成了。清洗后的数据通常更适合进一步的分析或机器学习模型训练。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值