LeetCode No.198

探讨了一种基于递归算法的解决方案,用于计算在不触发相邻房屋警报系统的情况下,小偷能从一系列房屋中窃取的最高金额。通过动态规划优化算法效率,避免重复计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。

示例 1:

输入: [1,2,3,1]
输出: 4
解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
  偷窃到的最高金额 = 1 + 3 = 4 。
示例 2:

输入: [2,7,9,3,1]
输出: 12
解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
  偷窃到的最高金额 = 2 + 9 + 1 = 12 。

 

解题思路:利用递归算法可以很好的解决这个问题。第 N 天所获得的最大收益,必然是第 N-2 + nums[N] 与 N-1两者相比的最大收益。

需要注意的一点是,nums的尺寸小于dp,为了计算的需要可以在nums后面插入数值0。

 

//198
 int rob(vector<int>& nums)
 {
     if(nums.empty()) return 0;
     if(nums.size()==1) return nums[0];
     size_t size = nums.size()+1;
     int dp[size];
     dp[0] = nums[0],dp[1]=max(nums[0],nums[1]);
     nums.push_back(0);
     for(size_t i=2;i < size;i++)
        dp[i] = max(dp[i-1],dp[i-2]+nums[i]);
     return dp[size-1];
 }//198

  

转载于:https://www.cnblogs.com/2Bthebest1/p/11188373.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值