7-14 插入排序还是堆排序 (25 分)

本文介绍了一种方法来判断给定的排序中间结果是由插入排序还是堆排序生成的。通过检查序列特性并应用特定的排序操作,可以确定所使用的排序算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:https://pintia.cn/problem-sets/1110537862649819136/problems/1110537981575114765

题目大意:

根据维基百科的定义:

插入排序是迭代算法,逐一获得输入数据,逐步产生有序的输出序列。每步迭代中,算法从输入序列中取出一元素,将之插入有序序列中正确的位置。如此迭代直到全部元素有序。

堆排序也是将输入分为有序和无序两部分,迭代地从无序部分找出最大元素放入有序部分。它利用了大根堆的堆顶元素最大这一特征,使得在当前无序区中选取最大元素变得简单。

现给定原始序列和由某排序算法产生的中间序列,请你判断该算法究竟是哪种排序算法?

具体思路:对于这里的插入排序,我们直接从左往有移动,看哪一个先不符合递增,然后再对这一段进行排序就好了(看样例猜的)。

然后堆排序,先讲一下原理吧,具体的大顶堆,就是第一个形成的堆第一个元素是这一段区间中的最大的。然后每一个我们选出最大的,放在最后。如果一个序列有n个元素的话,我们操作n-1次就可以了,每一次从[1,i]区间选择最大的。

AC代码:

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 # define ll long long
 4 # define inf 0x3f3f3f3f
 5 const int maxn = 2e4+100;
 6 int a[maxn];
 7 int b[maxn];
 8 void cal(int l,int r){
 9     int i=l,j=i*2;
10     while(j<=r){
11         if(j+1<=r&&b[j]<b[j+1])
12             j++;
13         if(b[j]>b[i]){
14             swap(b[i],b[j]);
15             i=j;
16             j=i*2;
17         }
18         else
19             break;
20     }
21 }
22 int main()
23 {
24     int n;
25     scanf("%d",&n);
26     for(int i=1; i<=n; i++)
27     {
28         scanf("%d",&a[i]);
29     }
30     for(int i=1; i<=n; i++)
31     {
32         scanf("%d",&b[i]);
33     }
34     int flag=-1;
35     int i;
36     for( i=1; i<=n; i++)
37     {
38         if(i==1)
39             continue;
40         else if(b[i]>=b[i-1])
41             continue;
42         else
43         {
44             flag=i;
45             break;
46         }
47     }
48     if(flag!=2)
49     {
50         sort(b+1,b+flag+1);
51         printf("Insertion Sort\n");
52         for(int i=1; i<=n; i++)
53         {
54             if(i==1)
55                 printf("%d",b[i]);
56             else
57                 printf(" %d",b[i]);
58         }
59         printf("\n");
60     }
61     else
62     {
63         printf("Heap Sort\n");
64         int pos=n;
65         while(pos>=2&&b[pos]>b[pos-1])
66             pos--;
67             swap(b[1],b[pos]);
68         cal(1,pos-1);
69         for(int i=1; i<=n; i++)
70         {
71             if(i==1)
72                 printf("%d",b[i]);
73             else
74                 printf(" %d",b[i]);
75         }
76         printf("\n");
77     }
78     return 0;
79 }

 

转载于:https://www.cnblogs.com/letlifestop/p/10615395.html

### 插入排序堆排序的特点及区别 #### 特点对比 插入排序是一种简单直观的排序方法,适用于较小规模的数据集。其基本思想是从第二个元素开始向前遍历数组,对于每一个待排序的元素,在已经排序好的部分找到合适的位置并插入其中[^1]。 堆排序则基于二叉堆数据结构实现,通过构建最大堆或最小堆来完成排序过程。具体来说,首先将无序列表构建成一个大根堆(升序排列),此时整个序列的最大值位于堆顶;接着不断移除堆顶元素放到最终位置,并调整剩余元素重新形成新的大根堆直到全元素处理完毕[^2]。 #### 时间复杂度- 平均时间复杂度 O(),最坏情况下接近 n² 的平方级增长。 - **堆排序** - 最好、平均最差情况下的时间复杂度均为 O(n log n),这使得它在面对大规模输入时表现更加稳定可靠。 #### 空间复杂度 - **插入排序**的空间复杂度较低,只需要常量级别的额外空间 O(1) 即可满足需求; - **堆排序**同样具有较好的空间性能,除了用于存储原始数据外仅需少量辅助变量支持算法运行,因此整体空间开销也是线性的 O(log n)。 #### 应用场景 ##### 插入排序适合于: - 数据量较少的小型集合排序任务; - 几乎已经是有序状态的数据列,因为在这种情形下插入排序能够达到近乎线性的时间效率 O(n)。 ##### 堆排序更适合应用于: - 大规模随机布的数据集排序工作; - 对稳定性有一定要求但又希望保持较高执行速度的情况下可以考虑使用堆排序替代其他高级排序技术如快速排序等。 ```python def insertion_sort(arr): for i in range(1, len(arr)): key = arr[i] j = i - 1 while j >= 0 and key < arr[j]: arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key def heapify(arr, n, i): largest = i l = 2 * i + 1 r = 2 * i + 2 if l < n and arr[largest] < arr[l]: largest = l if r < n and arr[largest] < arr[r]: largest = r if largest != i: arr[i], arr[largest] = arr[largest], arr[i] heapify(arr, n, largest) def heap_sort(arr): n = len(arr) for i in range(n//2 - 1, -1, -1): heapify(arr, n, i) for i in range(n-1, 0, -1): arr[i], arr[0] = arr[0], arr[i] heapify(arr, i, 0) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值