1. 论文基本信息
- 论文标题:Learning Discriminative Model Prediction for Tracking
- 论文作者:Goutam Bhat (CVL, ETH Zurich, Switzerland ) 等人
- 论文出处:ICCV 2019
- 在线阅读:http://openaccess.thecvf.com/content_ICCV_2019/papers/Bhat_Learning_Discriminative_Model_Prediction_for_Tracking_ICCV_2019_paper.pdf
- 源码链接:https://github.com/visionml/pytracking
2. 为什么要用hinge-like loss
在使用hinge-like loss之前,作者对残差的定义为:
r ( s , c ) = s − y c (1) r(s, c)=s-y_{c} \tag {1} r(s,c)=s−yc(1)
其中, s s s表示真实的响应得分, y c y_{c} yc表示期望的响应得分,通常采用一个高斯分布进行表示,两者之差即为所求解的残差,这是最基础的残差求解思想。
然而在目标跟踪问题