Python实现——二元线性回归(最小二乘法)

本文介绍了使用Python实现二元线性回归的矩阵公式法,重点在于理解公式推导和Python科学计算库的使用。虽然公式普遍,但作者在实际操作中遇到Python数据结构和库函数的挑战。文中分享了Coursera课程中的部分数据实现,并表达了对梯度下降直观性的赞赏,同时也指出大型矩阵情况下这种方法的局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2019/3/30
二元线性回归——矩阵公式法_又名:对于python科学库的糟心尝试_
二元线性回归严格意义上其实不过是换汤不换药,我对公式进行推导,其实也就是跟以前一样的求偏导并使之为零,并且最终公式的严格推导我大概也只能说是将将理解,毕竟最初的矩阵一开始都不太清楚应该是什么样子的,其中,Coursera的课程起到了非常显著的帮助。
其实这个部分我并不想写太多,因为理解并不是十分透彻,总体来讲,感觉就是一个公式的事情,其中对于python数据类型以及python库函数的使用反而耗费的时间更多,回头来更新。
python库函数的运用非常重要,也是卡住我好久的主要原因,其次,对于python几种数据结构类型也让我十分苦恼,毕竟我不太清楚大部分函数会返回给我什么样的结果。
其中最终的公式应该说是非常普及了,随便的搜索便可查找到,虽然花了这么大的功夫,最终带给我的印象却是远远不及梯度下降的那种循序渐进看着计算机一步步探索来的深刻。
然而,这不正是前人的努力所要想做到的一步到位的方式吗?
虽然是真真正正的计算公式,但是若是面对特殊的矩阵情况或者过大的矩阵,这个方法也是力不从心的,详情我不多赘述,毕竟我还是个没有系统学习线代概率的赤脚蒟蒻。
先这样,或许会再来更新吧。
以下是利用Coursera提供的部分数据进行的实现图像:
Figure_1

这里给出完整代码:

import xlrd
import sympy as sp
import xlwt
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值