神经网络相关激活函数

本文探讨了激活函数在神经网络中的重要性,解释了为何必须使用非线性激活函数,以及线性函数为何不适用于多层神经网络。文中详细介绍了两种常见的激活函数:sigmoid函数和ReLU函数,分析了它们的特点及应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

激活函数
神经网络的每个神经元输出都要经过激活函数的处理,并且激活函数都要选择非线性的函数(不是一条直线)
原因也比较简单
如果用线性函数来处理的话(类似f(x)=ax+b),经过多个神经元后,这些处理可以统一合为一个线性处理,也就失去了神经网络的多层的意义了。
都要用激活函数的原因也类似,毕竟神经元内部大多也都是线性处理
这里列举两个非常常用的激活函数

  • 1.sigmoid函数
    sigmoid
    sigmoid函数比较平滑,而且有一点是它没有任何一点的导数真正的等于0,因此不会太担心多次学习它不会带来任何变化,并且它的导数也十分简单,用起来十分称手。

  • 2.ReLU函数
    ReLU
    ReLU函数是突变的类型,虽然导数同样简单,但是它在x<0时导数为0,可以说阻断了反馈(?)

转载于:https://www.cnblogs.com/LOSKI/p/10741649.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值