05 图像检索领域经典文章及其开源项目

本文综述了深度学习在图像检索领域的最新进展,包括基于内容的图像检索技术、快速图像检索系统、大规模图像检索的开源项目及深度学习框架等关键信息。深入探讨了ANNSearch、特征袋模型、Hashing技术以及CNN在图像检索中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、文章

1.1 深度学习如何有效的用于图像检索

https://www.zhihu.com/question/29467370

1.2 图像检索:基于内容的图像检索技术

https://yongyuan.name/blog/cbir-technique-summary.html

1.3 图像检索:再叙ANN Search

https://yongyuan.name/blog/ann-search.html

二、开源项目

2.1 flask-image-retrieval

https://github.com/zzningxp/flask-image-retrieval

2.2 Image-Retrieval-by-Finetuning-CNN

https://github.com/layumi/Image-Retrieval-by-Finetuning-CNN

2.3 Hashing-for-Image-Retrieval

https://github.com/shengshuaihuang/Hashing-for-Image-Retrieval

2.4 Keras-Remote-sensing-image-retrieval

https://github.com/527760681/Keras-Remote-sensing-image-retrieval

2.5 content-based-image-retrieval

https://github.com/adrsh18/content-based-image-retrieval

2.6 fast-image-retrieval

https://github.com/xueeinstein/fast-image-retrieval

2.7 flask-keras-cnn-image-retrieval

https://github.com/willard-yuan/flask-keras-cnn-image-retrieval

2.8 基于deep learning的快速图像检索系统

文章介绍:https://blog.csdn.net/han_xiaoyang/article/details/50856583
代码:https://github.com/kevinlin311tw/caffe-cvprw15

代码运行与思考:
https://blog.csdn.net/lipandeng1453/article/details/79925266和 https://blog.csdn.net/aem666/article/details/69525841

基于caffe和lsh的快速图像检索系统,https://github.com/HanXiaoyang/image_retrieval

2.9 Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

代码:https://github.com/filipradenovic/revisitop

2.10 Deep Binary Representation for Efficient Image Retrieval

中文项目介绍:https://cloud.tencent.com/developer/article/1051476

代码:https://github.com/luseiee/DeepBinaryRepre

2.11 基于特征袋模型(Bag of Feature, BoF)

https://github.com/zysite/SoTu

2.12 Large-scale image retrival by deep learning(基于深度学习的大规模图像检索)

代码:https://github.com/zhaotaomcp/CBIR

2.13 CNN-for-Image-Retrieval

中文项目介绍:https://blog.csdn.net/wuzuyu365/article/details/52789688

代码:https://github.com/willard-yuan/CNN-for-Image-Retrieval

2.14 Feature extraction and reverse image search

代码:https://github.com/ml4a/ml4a-guides/blob/master/notebooks/image-search.ipynb

2.15 Bags of Local Convolutional Features for Scalable Instance Search

中文项目介绍:https://zhuanlan.zhihu.com/p/34194359
代码:https://github.com/imatge-upc/retrieval-2016-icmr

2.16 Proceedings of the DeepVision: Deep Learning in Computer Vision Workshop

代码:https://github.com/imatge-upc/retrieval-2016-deepvision

2.17 MassImageRetrieval

https://github.com/liuguiyangnwpu/MassImageRetrieval

三、深度学习框架

3.1 Caffe

http://www.cnblogs.com/luludeboke/p/7813060.html

3.2 不同matlab版本所支持的gcc g+版本

https://blog.csdn.net/jiandanjinxin/article/details/69943853?locationNum=9&fps=1

3.3 cuda和gcc版本兼容

http://www.cnblogs.com/tiandsp/p/9441494.html

四、数据库

4.1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值