目录
- 一、文章
- 二、开源项目
- 2.1 flask-image-retrieval
- 2.2 Image-Retrieval-by-Finetuning-CNN
- 2.3 Hashing-for-Image-Retrieval
- 2.4 Keras-Remote-sensing-image-retrieval
- 2.5 content-based-image-retrieval
- 2.6 fast-image-retrieval
- 2.7 flask-keras-cnn-image-retrieval
- 2.8 基于deep learning的快速图像检索系统
- 2.9 Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
- 2.10 Deep Binary Representation for Efficient Image Retrieval
- 2.11 基于特征袋模型(Bag of Feature, BoF)
- 2.12 Large-scale image retrival by deep learning(基于深度学习的大规模图像检索)
- 2.13 CNN-for-Image-Retrieval
- 2.14 Feature extraction and reverse image search
- 2.15 Bags of Local Convolutional Features for Scalable Instance Search
- 2.16 Proceedings of the DeepVision: Deep Learning in Computer Vision Workshop
- 2.17 MassImageRetrieval
- 三、深度学习框架
- 四、数据库
一、文章
1.1 深度学习如何有效的用于图像检索
https://www.zhihu.com/question/29467370
1.2 图像检索:基于内容的图像检索技术
https://yongyuan.name/blog/cbir-technique-summary.html
1.3 图像检索:再叙ANN Search
https://yongyuan.name/blog/ann-search.html
二、开源项目
2.1 flask-image-retrieval
https://github.com/zzningxp/flask-image-retrieval
2.2 Image-Retrieval-by-Finetuning-CNN
https://github.com/layumi/Image-Retrieval-by-Finetuning-CNN
2.3 Hashing-for-Image-Retrieval
https://github.com/shengshuaihuang/Hashing-for-Image-Retrieval
2.4 Keras-Remote-sensing-image-retrieval
https://github.com/527760681/Keras-Remote-sensing-image-retrieval
2.5 content-based-image-retrieval
https://github.com/adrsh18/content-based-image-retrieval
2.6 fast-image-retrieval
https://github.com/xueeinstein/fast-image-retrieval
2.7 flask-keras-cnn-image-retrieval
https://github.com/willard-yuan/flask-keras-cnn-image-retrieval
2.8 基于deep learning的快速图像检索系统
文章介绍:https://blog.csdn.net/han_xiaoyang/article/details/50856583
代码:https://github.com/kevinlin311tw/caffe-cvprw15
代码运行与思考:
https://blog.csdn.net/lipandeng1453/article/details/79925266和 https://blog.csdn.net/aem666/article/details/69525841
基于caffe和lsh的快速图像检索系统,https://github.com/HanXiaoyang/image_retrieval
2.9 Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
代码:https://github.com/filipradenovic/revisitop
2.10 Deep Binary Representation for Efficient Image Retrieval
中文项目介绍:https://cloud.tencent.com/developer/article/1051476
代码:https://github.com/luseiee/DeepBinaryRepre
2.11 基于特征袋模型(Bag of Feature, BoF)
https://github.com/zysite/SoTu
2.12 Large-scale image retrival by deep learning(基于深度学习的大规模图像检索)
代码:https://github.com/zhaotaomcp/CBIR
2.13 CNN-for-Image-Retrieval
中文项目介绍:https://blog.csdn.net/wuzuyu365/article/details/52789688
代码:https://github.com/willard-yuan/CNN-for-Image-Retrieval
2.14 Feature extraction and reverse image search
代码:https://github.com/ml4a/ml4a-guides/blob/master/notebooks/image-search.ipynb
2.15 Bags of Local Convolutional Features for Scalable Instance Search
中文项目介绍:https://zhuanlan.zhihu.com/p/34194359
代码:https://github.com/imatge-upc/retrieval-2016-icmr
2.16 Proceedings of the DeepVision: Deep Learning in Computer Vision Workshop
代码:https://github.com/imatge-upc/retrieval-2016-deepvision
2.17 MassImageRetrieval
https://github.com/liuguiyangnwpu/MassImageRetrieval
三、深度学习框架
3.1 Caffe
http://www.cnblogs.com/luludeboke/p/7813060.html
3.2 不同matlab版本所支持的gcc g+版本
https://blog.csdn.net/jiandanjinxin/article/details/69943853?locationNum=9&fps=1
3.3 cuda和gcc版本兼容
http://www.cnblogs.com/tiandsp/p/9441494.html