C++:点到线段的平面距离。点与点的平面距离。

本文介绍了一种计算平面上点到线段距离的算法,通过海伦公式和三角形面积公式实现。首先计算线段长度及点到线段两端的距离,接着利用半周长和海伦公式求出三角形面积,最后通过面积和线段长度求得点到线的距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LPoint是自己定义的点

//点(p0)  到线段(p1,p2)的距离
double GroundFilter::xj2DistancePointAndLine( LPoint p0, LPoint p1, LPoint p2 )
{
    double dis12 = xj2DistancePointAndPoint(p1, p2);//线段长度
    double dis01 = xj2DistancePointAndPoint(p0, p1);//p1与p0的距离
    double dis02 = xj2DistancePointAndPoint(p0, p2);//p2与p0的距离
    double HalfC = (dis12 + dis01 + dis02) / 2;// 半周长
    double s = sqrt(HalfC * (HalfC - dis12) * (HalfC - dis01) * (HalfC - dis02));//海伦公式求面积
    double xj2DisPL = 2 * s / dis12;// 返回点到线的距离(利用三角形面积公式求高)

    return xj2DisPL;
}


//点与点的平面距离
double GroundFilter::xj2DistancePointAndPoint(LPoint p1, LPoint p2 )
{
    double x1=p1.x, y1=p1.y;
    double x2=p2.x, y2=p2.y;

    double dis=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));

    return dis;
}
--------------------- 
作者:累了就要打游戏 
来源:CSDN 
原文:https://blog.csdn.net/xinjiang666/article/details/83996798 
版权声明:本文为博主原创文章,转载请附上博文链接!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值