从凑零钱问题理解动态规划

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:

输入:coins = [2], amount = 3
输出:-1
示例 3:

输入:coins = [1], amount = 0
输出:0

思路

先确定「状态」 , 也就是原问题和⼦问题中变化的变量。 由于硬币数量⽆
限, 所以唯⼀的状态就是⽬标⾦额 amount

然后确定 dp 函数的定义: 当前的⽬标⾦额是 n , ⾄少需要 dp(n) 个硬
币凑出该⾦额。

这里dp类似一个函数,n是参数,dp[n]是返回值。n一般是题目中变化的量;dp[n]一般是所求的最优值。

这里for循环i从0开始,不用担心dp[i]的下标变为负值。因为有条件if (i - coin < 0) continue;控制。dp[i]一定要先求出i小的,再逐渐变大。

int coinChange(vector<int>& coins, int amount) {
// 数组⼤⼩为 amount + 1, 初始值也为 amount + 1
vector<int> dp(amount + 1, amount + 1);
// base case
dp[0] = 0;
for (int i = 0; i < dp.size(); i++) {
// 内层 for 在求所有⼦问题 + 1 的最⼩值
for (int coin : coins) {
// ⼦问题⽆解, 跳过
if (i - coin < 0) continue;
dp[i] = min(dp[i], 1 + dp[i - coi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值