vscode tf2.0无法自动补全问题

在本文中,作者分享了如何在VSCode设置中添加额外路径,以确保Python自动补全功能正确识别TensorFlowCPU_env环境中的库。通过在workspace的settings中加入指定的Python路径,避免修改__init__.py文件,从而解决了TensorFlow库的自动补全问题。

workspace的setting中加上

"python.autoComplete.extraPaths": ["/Users/xx/opt/anaconda3/envs/tensorflowcpu_env/lib/python3.7/site-packages/"]

注意后面是个数组,之前参考了这个链接,起始没必要(改__init__文件)
https://github.com/tensorflow/tensorflow/issues/32982

### 如何在 VSCode 中安装 TensorFlow 2.0 #### 准备工作 为了顺利配置环境,在开始之前需准备好 Anaconda 和 Visual Studio Code (VSCode)[^1]。 #### 创建并激活 Conda 虚拟环境 通过Anaconda来管理Python版本以及依赖包可以极大简化操作流程。打开命令提示符或终端窗口,输入如下指令创建名为`tf_env`的新虚拟环境,并指定Python版本: ```bash conda create -n tf_env python=3.8 ``` 接着激活该环境以便后续安装其他必要的库文件: ```bash conda activate tf_env ``` #### 安装 TensorFlow 及其依赖项 对于仅需要CPU支持的情况而言,可以直接利用pip工具完成TensorFlow的部署;而对于希望启用GPU加速功能,则还需额外准备CUDA Toolkit与cuDNN SDK等组件[^2]。 针对 CPU 版本执行以下命令即可快速获取最新稳定版TensorFlow: ```bash pip install tensorflow ``` 如果目标平台具备NVIDIA GPU硬件设施并且打算充分利用其计算能力的话,请先参照官方文档确认兼容性列表之后再下载对应版本号的CUDA和cuDNN资源包进行本地化设置,最后依照下面的方式引入特定标签下的TensorFlow-GPU镜像源地址从而实现高效稳定的模型训练过程优化[^4]: ```bash pip install tensorflow-gpu==<version> ``` 这里建议采用清华TUNA镜像站作为国内用户的首选方案以加快下载速度。 #### 配置 VSCode 使用新创建的解释器 启动Visual Studio Code编辑器后,按快捷键 `Ctrl+Shift+P` 打开命令面板,搜索并选择 "Python: Select Interpreter" 来切换当前项目所使用的Python解析程序至刚才建立好的Conda Environment之中[^5]。 此时应该可以在界面右下角看到已成功关联上了带有 `(tf_env)` 前缀字样的运行时环境名称。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值