
目标检测
文章平均质量分 78
Maker~
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
17、论文阅读:VMamba:视觉状态空间模型
视觉表示学习是计算机视觉中的一个基础研究领域,随着深度学习的兴起,该领域取得了显著进展。为了表示视觉数据中的复杂模式,提出了两类主要的主干网络,即卷积神经网络 (CNN)和视觉 Transformer (ViTs),并在多种视觉任务中得到了广泛应用。相比于 CNN,ViTs 由于融合了自注意力机制,通常在大规模数据上的学习能力更强。然而,自注意力机制对于标记数的二次复杂度在处理具有大空间分辨率的下游任务时带来了巨大的计算开销。为应对这一挑战,已有大量研究致力于提升注意力计算的效率。原创 2024-11-05 18:55:35 · 1619 阅读 · 1 评论 -
16、论文阅读:Mamba YOLO:用于目标检测的基于 SSM 的 YOLO
在深度学习技术快速发展的推动下,YOLO 系列在实时目标检测器领域设立了新的标杆。研究人员在 YOLO 的基础上不断探索创新的重参数化、有效的层聚合网络和无锚技术的应用。为了进一步提升检测性能,基于 Transformer 的结构被引入,显著扩展了模型的感受野,并取得了显著的性能提升。然而,这些改进也带来了代价,因为自注意力机制的二次复杂性增加了模型的计算负担。幸运的是,状态空间模型 (SSM) 的出现有效地缓解了由二次复杂性引发的问题。基于这些进展,我们提出了Mamba-YOLO。原创 2024-11-03 19:23:47 · 2254 阅读 · 1 评论 -
15、论文阅读:使用反向多类Adaboost与深度学习的水下目标检测
近年来,基于深度学习的方法在标准目标检测方面取得了令人瞩目的效果。然而,这些方法在应对水下目标检测时能力不足,原因在于以下挑战:(1) 在实际应用中,目标通常较小且图像模糊;(2) 水下数据集及实际应用中的图像伴随异质性噪声。为了解决这两个问题,我们首先提出了一种新颖的神经网络架构,即样本加权超网络 (SWIPENet),用于小目标检测。SWIPENet由高分辨率和语义丰富的超特征图组成,可以显著提高小目标检测的准确性。此外,我们提出了一种新颖的样本加权损失函数。原创 2024-10-28 15:03:06 · 1209 阅读 · 0 评论 -
14、论文阅读:SuperYOLO:多模态遥感图像中的超分辨率辅助目标检测
在遥感图像 (RSI) 中,准确且及时地检测包含几十个像素的多尺度小物体仍然充满挑战。现有的大多数解决方案主要设计复杂的深度神经网络,以从背景中分离出物体并学习强特征表示,但这通常会导致高计算负担。本文提出了一种名为SuperYOLO的 RSI 目标检测方法,具有准确且快速的特点。该方法通过融合多模态数据和辅助超分辨率 (SR) 学习,在多尺度目标的高分辨率 (HR) 检测中兼顾检测精度和计算成本。原创 2024-10-25 20:12:41 · 3061 阅读 · 0 评论 -
CUDA error: out of memory问题
究其原因,在于model.load_state_dict(torch.load(‘pretrain-model.pth’, map_location=device))这个代码省略了map_location=device。通过torch.load加载预训练模型pretrain-model.pth,map_location=device 是一个参数,用于指定模型参数加载到哪个设备上。加载模型时,模型也不大,GPU内存也完全够,但就是出现这个CUDA内存溢出问题。这就很容易出现内存不足的情况。原创 2024-10-19 13:19:03 · 476 阅读 · 0 评论 -
12、论文阅读:SpikeYOLO:高性能低能耗目标检测网络
脉冲神经网络(Spiking Neural Networks, SNNs)具有生物合理性和低功耗的优势,相较于人工神经网络(Artificial Neural Networks, ANNs)。然而,由于性能较差,目前 SNNs 的应用仅限于简单的分类任务。在这项工作中,我们专注于缩小 SNNs 和 ANNs在物体检测任务上的性能差距。我们的设计围绕网络架构和脉冲神经元展开。首先,YOLO 系列在转换为对应的脉冲版本时,由于模块设计过于复杂,导致了脉冲退化。为了解决这个问题,我们设计了一种。原创 2024-10-16 15:26:22 · 1211 阅读 · 0 评论 -
7、论文阅读:20 年来的物体检测:一个调查
本文从技术演变的角度广泛回顾了这个快速发展的研究领域(1990s - 2022s)。本文涵盖了许多主题,包括历史上的目标检测的里程碑检测数据集指标检测系统的基本构建模块加速技术和最新的最先进的检测方法。原创 2024-09-23 21:12:36 · 981 阅读 · 0 评论 -
8、RCNN介绍及实现
R-CNN论文解读/总结 详细笔记原创 2024-09-24 20:25:21 · 192 阅读 · 0 评论