统计自然语言处理基础学习笔记(7)——句法分析

本文深入探讨了中文自然语言处理中的句法分析,重点介绍了句法分析的基本概念及在复杂句子中识别依存关系的重要性。同时,文章详细阐述了指代和共指现象的挑战及其在文本理解中的关键作用,强调了共指消解与指代消解在现代自然语言处理中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    在中文的自然语言处理种,句法分析是一个比较重要的部分。

    句法分析,英文为Parsing,指对句子种的词语语法功能进行分析。一个完整的汉语句子,一般有主语、谓语、宾语,复杂一些的句子就会出现各种各样的依存关系,包括补语、定语、状语、并列、同位语、数量、介宾、连动、疑问连动、兼语、关联、重复、标点、的字结构、地字结构、语气、时态等。如果在中文语言处理过程中,我们可以准确无误的对句子分析出这些依存关系,那么我们可以比较准确的找到这个句子的核心词。自然语言处理的初级目标就可以基本实现了。

    在句法分析的过程,我们会经常遇到指代的问题。例如,

    我毕业于**大学,我在这里生活了四年。它带给我很多的回忆。

    这里的“**大学”、“这里”都是指一个实体,属于共指现象。“它“与”生活了四年“属于指代关系。

    中文自然语言处理的指代非常难处理。按照指向,可以分为回指和预指,其中预指是用于指代下文的关系。不管如何指向,”指代“和”共指“关系都需要对文本的情景进行分析,这涉及语料上下文的分析。一般意义上讲,共指是可以脱离上下文存在,但为了更好的理解语义确不能脱离上下文,而指代是在一个下的范围内存在。它需要解决指代和共指是从哪里开始,到哪里结束。如果不能解决这个问题,将导致语句结构和语意不够清晰,影响整个文章的依赖关系的分析,比如“等价关系”,“上下位关系”,“整体和部分关系”等。

    近年来,共指消解(Coreference Resolution) 和指代消解(anaphora resolution)的研究受到了格外的关注,2000 年开始的ACE(Automatic Content Extraction) 评测会议中共指消解也是重要内容之一。中文的共指消解研究开始于二十世纪末。中文共指消解评测开始于2003 年ACE 会议。

### NLP自然语言处理开卷期末考试题目及复习资料 对于NLP自然语言处理课程的开卷期末考试,准备过程应注重理解和应用核心概念而非单纯记忆。这类考试通常侧重于评估学生对理论的理解及其实际运用能力。 #### 考核重点 考核内容可能围绕以下几个方面展开: - **基础理论**:掌握形式化定义、模型结构以及算法原理等基础知识[^1]。 - **案例分析**:能够结合具体应用场景解释技术实现细节并讨论其优缺点[^2]。 - **编程实践**:编写简单的程序来解决特定任务,比如分词、句法解析或是情感分类等问题。 #### 复习建议 为了更好地应对这样的考试形式,可以采取如下策略: - **梳理笔记与教材**:整理课堂上讲授的关键点,并对照教科书加深印象。 - **练习真题**:如果可以获得往年的试题,则可以通过模拟测试熟悉命题风格和答题技巧。 - **参与讨论交流**:加入学习小组分享见解,在互动中巩固所学知识。 #### 示例题目 以下是几个典型的NLP领域内适合用于开卷考试的形式化的例子: 1. 给定一段英文文本,请设计一个基于规则的方法来进行命名实体识别(NER)。描述该方法的工作流程,并指出潜在局限性。 2. 解释什么是条件随机场(CRF),它如何应用于序列标注任务?请提供至少两个实际场景下的应用实例。 3. 对比两种不同的机器翻译框架——统计机器翻译(SMT) 和神经网络机器翻译(NMT),分别阐述它们的优点和不足之处。 ```python # Python代码片段展示了一个简单的TF-IDF计算函数作为复习的一部分 from sklearn.feature_extraction.text import TfidfVectorizer def calculate_tfidf(corpus): vectorizer = TfidfVectorizer() tfidf_matrix = vectorizer.fit_transform(corpus) feature_names = vectorizer.get_feature_names_out() dense = tfidf_matrix.todense() denselist = dense.tolist() df = pd.DataFrame(denselist, columns=feature_names) return df.head() corpus = [ 'This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?', ] print(calculate_tfidf(corpus)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值