信息融合与大数据分析:技术原理、方法及应用
一、复杂信息融合任务的挑战与解决方案
复杂信息融合任务涉及多层面、多渠道的综合决策,需要大量历史和在线积累的知识,是一个复杂的处理过程。传统的单一统计或不准确推理方法,以及基本方法的简单堆叠或算法的一般组合,都难以解决这类问题,因此需要借助智能模型的理论方法。
一些新兴的模型和方法在信息融合领域得到了广泛应用:
- 贝叶斯网络(BN) :强调因果关系及其在融合处理过程中的应用,主要基于节点进行分布式处理。
- 智能体(Agent) :侧重于基于单元或模块的分布式处理,其中间层结构可将基础所需的处理单元模块化和标准化。多智能体系统的智能可通过一些方法、函数、过程、搜索算法或强化学习来实现,能简化整个融合过程的结构,便于融合处理。
- 本体(Ontology) :主要聚焦于基于概念和中间处理结果的分布式处理,以清晰和标准化的形式表达概念和中间处理结果,简化融合问题的表达,加速融合处理的设计与实现。
二、基于精确时空信息的融合技术
2.1 基于智能体的多源传感器管理方法
多源异步异构数据具有来源众多、结构差异大的特点。结合北斗系统提供的精确时空信息,可以为异构物联网传感器建立统一的数据和通信标准,形成基于智能体的多传感器管理方法。该方法提供设备管理、数据访问、协议分析等基本功能,并基于时间序列数据建立具有读写和计算优化的高性能系统,能与时间序列数据库的末端实现无缝实时协作。
传感器网络结构由计算节点、传感器和通信网络三部分组成: