
机器学习
文章平均质量分 61
伍同学笔记
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
tf.saved_model.load()出错
有时我们保存tensorflow2.x模型时,采用了tensorflow的统一模型保存格式,tf.saved_model.save(model, "保存的目标文件夹名称")当我们di原创 2021-06-21 14:06:15 · 2065 阅读 · 0 评论 -
0-1Loss、Cross Entropy Loss、Hinge Loss、Exponential Loss、Modified Huber Loss 等几种常见损失函数的比较
前言在监督式机器学习中,无论是回归问题还是分类问题,都少不了使用损失函数(Loss Function)。**损失函数(Loss Function)**是用来估量模型的预测值 f(x) 与真实值 y 的不一致程度。若损失函数很小,表明机器学习模型与数据真实分布很接近,则模型性能良好;若损失函数很大,表明机器学习模型与数据真实分布差别较大,则模型性能不佳。我们训练模型的主要任务就是使用优化方法来寻找损失函数最小化对应的模型参数。在讨论分类问题的损失函数之前,我想先说一下模型的输出 g(s)。一般来说,二分转载 2021-06-09 16:03:22 · 4724 阅读 · 0 评论 -
损失函数softmax_cross_entropy、binary_cross_entropy、sigmoid_cross_entropy之间的区别与联系
cross_entropy-----交叉熵是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。在介绍softmax_cross_entropy,binary_cross_entropy、sigmoid_cross_entropy之前,先来回顾一下信息量、熵、交叉熵等基本概念。---------------------信息论交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起。一、信息量首先是信息量。假设我们听到了两件事,分别如下:事件A:巴西队进入转载 2021-06-07 21:27:05 · 650 阅读 · 0 评论 -
机器学习中几种常见的概率分布
https://blog.csdn.net/qq_32806793/article/details/99059670感谢大佬的通俗解释。转载 2021-03-13 22:58:13 · 761 阅读 · 0 评论 -
协方差、相关系数、样本方差的分母是 n-1、协方差矩阵(covariance matrix)
1.协方差可以通俗的理解为:两个变量在变化过程中是同方向变化?还是反方向变化?同向或反向程度如何?你变大,同时我也变大,说明两个变量是同向变化的,这时协方差就是正的。你变大,同时我变小,说明两个变量是反向变化的,这时协方差就是负的。从数值来看,协方差的数值越大,两个变量同向程度也就越大。反之亦然。公式: 有X,Y两个变量,每个时刻的“X值与其均值之差”乘以“Y值与其均值之差”得到一个乘积,再对这每时刻的乘积求和并求出均值。期望值可以简单的理解为均值。...原创 2021-02-02 17:25:02 · 2937 阅读 · 0 评论