2018.09.28 牛客网contest/197/A因子(唯一分解定理)

本文介绍了一种在算法竞赛中应用唯一分解定理解决特定数学问题的方法。通过计算质因子在n!中出现的次数,找到最小比率以求解问题。使用C++实现并详细解释了代码逻辑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门
比赛的时候由于变量名打错了调了很久啊。
这道题显然是唯一分解定理的应用。
我们令 P = a 1 p 1 ∗ a 2 p 2 ∗ . . . ∗ a k p k P=a_1^{p_1}*a_2^{p_2}*...*a_k^{p_k} P=a1p1a2p2...akpk
那么对于每一个质因子 a i a_i ai我们都可以计算出它在 n ! n! n!中出现 b i b_i bi次,每次计算是 O ( l o g a i n ) O(log_{a_i} n) O(logain)的。
由于对于每个 P P P每个 a i a_i ai会出现 p i p_i pi次因此我们只需要取 m i n min min{ b i / k i b_i/k_i bi/ki}就行了。
代码:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll n,p,ans=1e18;
inline ll calc(ll tmp){
	ll mul=tmp,cnt=0;
	while(mul<=n&&mul>0){ 
		cnt+=n/mul;
		mul*=tmp;
	}
	return cnt;
}
ll pri[100005],vis[10005],tot=0;
inline void init(){
	for(int i=2;i<=p;++i){
		if(!vis[i])pri[++tot]=i;
		for(int j=1;j<=tot;++j){
			int k=pri[j]*i;
			if(k>p)break;
			vis[k]=1;
			if(i%pri[j]==0)break;
		}
	}
}
int main(){
	cin>>n>>p,init();
	ll len=sqrt(p);
	for(ll i=1;pri[i]<=len;++i){
		if(p%pri[i])continue;
		ll siz=0;
		while(p%pri[i]==0)++siz,p/=pri[i];
		ans=min(ans,calc(pri[i])/siz);
	}
	if(p!=1)ans=min(ans,calc(p));
	cout<<ans;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值