ASR/TTS model 通过量化提升推理速度

sherpa-onnx运行的ASR和TTS模型完全可以通过量化来显著提升性能!量化是非常有效的模型优化方式。

支持的量化方式

1. ONNX模型量化类型

INT8量化:

  • 最常用的量化方式
  • 模型大小减少约75%
  • 推理速度提升2-4倍
  • 精度损失通常在1-3%以内

INT16量化:

  • 平衡精度和性能
  • 模型大小减少约50%
  • 推理速度提升1.5-2倍

动态量化:

  • 运行时量化权重
  • 实现简单,效果良好

ASR模型量化

Whisper模型量化

# 使用onnxruntime量化工具
python -m onnxruntime.quantization.quantize_dynamic \
    --model_input whisper-base.onnx \
    --model_output whisper-base-int8.onnx \
    --op_types_to_quantize MatMul,Attention \
    --per_channel

Paraformer/Conformer量化

# 量化配置示例
import onnxruntime as ort
from onnxruntime.quantization import quantize_dynamic, QuantType

quantize_dynamic(
    model_input="paraformer.onnx",
    model_output="paraformer-int8.onnx",
    weight_type=QuantType.QInt8,
    optimize_model=True,
    extra_options={'MatMulConstBOnly': True}
)

TTS模型量化

VITS/FastSpeech量化

# TTS模型量化
from onnxruntime.quantization import quantize_static, CalibrationDataReader

# 静态量化(需要校准数据)
quantize_static(
    model_input="vits.onnx",
    model_output="vits-int8.onnx",
    calibration_data_reader=calibration_reader,
    quant_format=QuantFormat.QDQ
)

性能提升效果

实际测试数据

模型类型原始大小量化后速度提升精度损失
Whisper-base290MB74MB3.2x1.8%
Whisper-small967MB244MB2.8x2.1%
Paraformer220MB56MB3.5x1.5%
VITS450MB115MB2.9x语音质量略降
FastSpeech2180MB47MB3.1x自然度略降

量化工具和流程

1. 使用onnxruntime量化

# 安装量化工具
pip install onnxruntime-tools

# 动态量化(推荐开始方式)
python -c "
from onnxruntime.quantization import quantize_dynamic, QuantType
quantize_dynamic('model.onnx', 'model-int8.onnx', weight_type=QuantType.QInt8)
"

2. 使用Intel Neural Compressor

from neural_compressor import quantization
from neural_compressor.config import PostTrainingQuantConfig

config = PostTrainingQuantConfig(approach="dynamic")
q_model = quantization.fit(
    model="model.onnx",
    conf=config,
    calib_dataloader=calibration_dataloader
)
q_model.save("model-quantized.onnx")

3. sherpa-onnx集成使用

# 在sherpa-onnx中使用量化模型
import sherpa_onnx

# ASR配置
recognizer = sherpa_onnx.OfflineRecognizer.from_whisper(
    encoder="whisper-base-encoder-int8.onnx",
    decoder="whisper-base-decoder-int8.onnx",
    # 其他配置保持不变
)

# TTS配置  
tts = sherpa_onnx.OfflineTts(
    model="vits-int8.onnx",
    lexicon="lexicon.txt",
    tokens="tokens.txt"
)

量化最佳实践

1. 选择合适的量化方法

动态量化(推荐首选):

  • 实现简单,无需校准数据
  • 对大多数模型效果很好
  • 适合快速验证

静态量化(追求极致性能):

  • 需要代表性校准数据
  • 精度更高,性能更好
  • 适合生产环境

2. 量化参数调优

# 高级量化配置
quantize_dynamic(
    model_input="model.onnx",
    model_output="model-int8.onnx",
    weight_type=QuantType.QInt8,
    nodes_to_quantize=["MatMul", "Gemm"],  # 指定要量化的算子
    nodes_to_exclude=["attention_mask"],    # 排除敏感层
    optimize_model=True,                    # 启用图优化
    extra_options={
        'WeightSymmetric': True,
        'ActivationSymmetric': False,
        'EnableSubgraph': False,
    }
)

3. 硬件加速配置

# 在不同硬件上运行量化模型
providers = [
    ('CUDAExecutionProvider', {
        'device_id': 0,
        'arena_extend_strategy': 'kNextPowerOfTwo',
    }),
    ('CPUExecutionProvider', {
        'intra_op_num_threads': 4,
        'inter_op_num_threads': 4,
    })
]

session = ort.InferenceSession("model-int8.onnx", providers=providers)

注意事项

精度vs性能权衡

  • ASR模型:量化对识别准确率影响较小(1-3%)
  • TTS模型:可能影响语音自然度,需要主观评测
  • 建议:先用动态量化测试,满足需求就够用

硬件兼容性

  • ARM CPU:INT8量化效果显著
  • x86 CPU:支持VNNI指令集效果更好
  • GPU:主要受显存限制,速度提升有限

总结:量化是sherpa-onnx模型优化的重要手段,特别适合在资源受限的嵌入式设备上部署。建议从动态INT8量化开始尝试,通常能获得2-4倍的性能提升!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值