leetcode——Maximum Subarray

本文介绍了一种寻找数组中最大子数组和的有效算法。通过分析可知,子数组两端不应包含负数序列。算法使用变量记录当前序列和,并迭代更新最大值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题目:

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
the contiguous subarray [4,-1,2,1] has the largest sum = 6.

解析:题目要求找到数组中和最大的相邻子数组。要让子数组的和最大,显然该子数组的最前端与最后端都不应该有一段和为负数的连续序列,否则去掉该段序列可以得到一个和更大的序列。由此可以得到一个算法,先假设最大和max为nums[0],用变量sum来记录当前序列的和。从nums[1]开始循环,每当nums[i]<0时,便得到一个极大值,若当前序列的和大于max,则另max=sum,随后判断sum是否小于0,若sum<0,则序列从sums[i]重新开始,否则将nums[i]加进序列中。具体代码如下:


class Solution {
public:
	int maxSubArray(vector<int>& nums) {
		int max = nums[0], sum = nums[0];
		for(int i=1; i<nums.size(); i++)
		{
			if(nums[i] < 0 && sum > max)	max = sum;
			if(sum < 0)	sum = nums[i];
			else	sum += nums[i];
		}
		return sum > max ? sum : max;	
	}
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值