A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
解析:可利用动态规划解题,假设目的地为(i,j),则可以通过(i-1,j)或者(i,j-1)到达,因此可得:dp[i][j] = dp[i-1][j] + dp[i][j-1]。时间复杂度为O(m*n),空间复杂度为O(m*n),代码如下:
class Solution {
public:
int uniquePaths(int m, int n) {
int dp[m][n];
for(int i=0; i<m; i++) dp[i][0] = 1;
for(int i=0; i<n; i++) dp[0][i] = 1;
for(int i=1; i<m; i++)
for(int j=1; j<n; j++)
dp[i][j] = dp[i-1][j] + dp[i][j-1];
return dp[m-1][n-1];
}
};
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
解析:加入障碍之后,显然若格子(i,j)为障碍,则dp[i][j] = 0,此外初始化时进行处理即可,其余与Unique Paths类似。时间复杂度为O(m*n),空间复杂度为O(m*n),代码如下:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> >& obstacleGrid) {
int m = obstacleGrid.size(), n = obstacleGrid[0].size(), dp[m][n];
int i = 0, j = 0;
for(i=0; i<m && obstacleGrid[i][0]!=1; i++) dp[i][0] = 1;
for(; i<m; i++) dp[i][0] = 0;
for(j=0; j<n && obstacleGrid[0][j]!=1; j++) dp[0][j] = 1;
for(; j<n; j++) dp[0][j] = 0;
for(i=1; i<m; i++)
for(j=1; j<n; j++)
{
if(obstacleGrid[i][j] == 1) dp[i][j] = 0;
else dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
return dp[m-1][n-1];
}
};