- 博客(346)
- 收藏
- 关注
原创 【论文阅读】Dying Clusters Is All You Need - Deep Clustering With an Unknown Number of Clusters(3)
本文提出UNSEEN框架,用于解决深度聚类中簇数未知的问题。该框架创新性地将簇数估计与聚类过程相结合,支持多种深度聚类算法。实验表明,UNSEEN在图像和表格数据集上优于已知真实簇数的基线方法,在16/18个场景中取得最佳表现。同时验证了其核心组件最近邻损失LUNSEEN的重要性,并分析了死亡阈值t的影响。UNSEEN是首个可灵活适配不同深度聚类算法的通用框架,为无监督学习提供了新思路。代码已开源。
2025-08-31 07:00:00
618
原创 【论文阅读】Dying Clusters Is All You Need - Deep Clustering With an Unknown Number of Clusters(2)
本文提出UNSEEN框架,解决深度聚类中簇数量需预先设定的难题。该框架通过监测训练过程中样本频繁改变簇归属的现象,识别并移除"死亡簇"(样本极少的簇),动态调整簇数量。创新性地引入基于最近邻的损失项,削弱初始聚类偏差,并设计自适应近邻数l=|B|/k_j(B为batch大小,k_j为当前活跃簇数)。实验表明,UNSEEN可与DCN、DEC、DKM等主流深度聚类算法灵活结合,在图像和表格数据上表现优异。代码已开源。
2025-08-30 07:30:00
1026
原创 【论文阅读】Dying Clusters Is All You Need - Deep Clustering With an Unknown Number of Clusters(1)
本文提出UNSEEN框架,解决深度聚类中需预先指定簇数的问题。UNSEEN仅需给定簇数上界,即可自动估计最优簇数,并能与多种深度聚类算法(如DCN、DEC、DKM)结合使用。通过实验验证,该方法在图像和表格数据上表现良好,即使上界被高估仍能保持性能。代码已开源。该框架弥补了现有方法依赖初始嵌入或算法专用性的不足,为无监督聚类提供了更通用的解决方案。
2025-08-29 21:12:25
1537
原创 【每天一个知识点】云安全
云安全技术架构聚焦数据保护与业务连续性,技术范畴涵盖身份认证、数据加密、网络隔离、应用防护等七个领域。核心措施包括多因子认证、加密存储传输、零信任架构、容器安全等,并强调合规性要求。关键技术采用机密计算、CWPP等新兴方案,发展趋势呈现零信任普及化、AI智能化及国产化适配三大方向。整体构建从基础设施到应用层的立体防护体系,确保云环境安全可控。
2025-08-29 07:30:00
1388
原创 【每天一个知识点】云存储(Cloud Storage)
云存储技术解析:从架构设计到优化实践 云存储技术提供对象、块和文件三种存储服务类型,通过标准接口对接各类应用场景。关键技术包括多副本/纠删码容灾、一致性模型、多租户隔离等,支持热温冷数据分层管理。典型实现涵盖开源方案(Ceph/MinIO)和商业云服务,满足容器、大数据、AI等生态需求。优化建议涉及分片上传、小文件聚合等实践技巧,同时强调安全合规要求。完整的参考架构展示了从接入层到底层存储的完整技术栈,为实际部署提供指导。
2025-08-28 20:09:55
760
原创 【每天一个知识点】容器云(Container Cloud)
容器云是以容器为基本运行单元,结合编排平台(如Kubernetes)构建的云平台,支持弹性伸缩、微服务架构等特性。其技术架构包含基础层、容器运行时层、编排管理层、云平台服务层和应用层。容器云具有轻量高效、跨平台、弹性伸缩等优势,适用于企业私有云、公有云PaaS、行业云和边缘计算等场景。
2025-08-27 07:00:00
457
原创 【云计算】云原生(Cloud Native)
云原生是利用云计算特性的现代应用构建方法论,包含容器化、微服务、DevOps等核心技术,具有弹性、可观测等优势。其趋势包括混合云、边缘计算、AIOps融合及绿色计算。
2025-08-26 21:07:13
569
原创 【每天一个知识点】空间转录组学(Spatial Transcriptomics, ST)
空间转录组学是一种结合单细胞测序与空间定位的新技术,能在保留组织空间结构的同时获取全转录组数据。该技术突破了传统scRNA-seq丢失空间信息和免疫组化检测范围有限的局限,通过芯片捕获或原位测序等方法,实现"分子-细胞-组织"的立体映射。其在肿瘤微环境、神经科学和发育生物学等领域有重要应用价值。未来发展趋势包括与多组学技术融合、提升分辨率至单细胞水平,以及开发更先进的数据分析方法。该技术有望推动精准医学发展,为疾病诊断和治疗提供新视角。
2025-08-26 07:00:00
569
原创 【每天一个知识点】大模型训推一体机
大模型训推一体机是整合训练与推理功能的专用AI设备,搭载高性能GPU/NPU芯片和高速互联架构,支持百亿至千亿参数模型的训练优化与高并发推理。其核心特点包括分布式并行训练、低时延推理加速、模型量化优化及安全管理平台,适用于政企、金融、医疗等行业的大模型本地化部署。主流厂商提供国产化与国际方案,如华为Atlas900、NVIDIA DGX等,通过软硬件协同设计实现从模型开发到应用落地的全流程支持。
2025-08-25 23:43:31
453
原创 【每天一个知识点】训推一体机
训推一体机是集模型训练与推理部署于一体的智能计算设备,通过软硬件一体化设计实现AI应用快速落地。其核心功能包括数据准备、模型训练、验证压缩及自动化部署,支持计算机视觉、自然语言处理等多元场景。设备通常配备GPU/TPU等算力资源,预置主流AI框架和管理平台,满足科研机构和企业对高效AI开发的需求。典型产品如华为Atlas900、浪潮AI一体机等,在智慧工厂、医疗影像等领域具有显著应用价值,能有效降低AI技术研发与运维成本。
2025-08-23 21:40:46
292
原创 【论文阅读】MOSGAT: Uniting Specificity-Aware GATs and Cross Modal-Attention to Integrate Multi-Omics Data
本研究提出MOSGAT多组学数据融合框架,通过特异性感知图注意力网络(GATs)和跨模态注意力机制解决多组学整合的关键挑战。该框架为每种组学设计专用GAT提取特征,采用自适应置信注意力加权增强特征可靠性,并利用多头自注意力挖掘跨组学关联。在四个公开医学数据集上的实验表明,MOSGAT在分类性能上显著优于现有15种方法,验证了其在特征提取和跨组学关联探索方面的有效性。
2025-08-23 21:26:29
983
1
原创 【每天一个知识点】AIOps 与自动化管理
AIOps将人工智能与大数据技术应用于IT运维,实现异常检测、故障预测和自动化处理。其核心包括基础自动化、配置管理、CI/CD流程和智能运维自动化,通过与AIOps结合实现数据驱动的智能决策和自愈能力。人才培养需注重自动化工具使用、AIOps平台分析及智能化运维方案设计能力培养,为云计算和DevOps岗位输送专业人才。
2025-08-22 23:58:51
366
原创 【论文阅读】MOHGCN: A trustworthy multi-omics data integration framework based on specificity-aware hetero
本研究提出MOHGCN框架,用于可信赖的多组学数据整合与疾病诊断。该框架创新性地构建了样本-基因异质图,并设计了特异性感知的异质图卷积网络(HGCN)来提取组学特征。通过引入基于真实类别概率(TCP)的置信度学习模块和跨模态自注意力机制,MOHGCN有效提升了模型的可信度和分类性能。在四个多组学医学数据集上的实验表明,MOHGCN在分类任务中显著优于现有方法,同时验证了其在特征提取和组学关联挖掘方面的有效性。该研究为多组学数据整合提供了新的可信计算范式。
2025-08-22 08:00:00
2089
原创 【每天一个知识点】 时空组学(Spatiotemporal Omics)
时空组学整合空间位置与时间动态,通过多组学技术(如空间转录组、蛋白组等)和计算方法(GNN、动态贝叶斯网络等),绘制生命系统的四维分子图谱。其应用涵盖发育生物学、肿瘤微环境、神经科学等领域,但面临高维数据融合、批次效应、算力需求等挑战。该技术为精准医学提供了新的研究视角。
2025-08-21 12:17:53
272
原创 【论文阅读】SIMBA: single-cell embedding along with features(3)
SIMBA提出了一种创新的单细胞图嵌入方法,通过构建细胞与特征(基因、ATAC峰等)的联合图结构,实现多组学数据整合与无聚类分析。该方法不仅能有效消除批次效应,还能在共享潜在空间中同步识别细胞类型特异性标记。相比传统方法,SIMBA在批次校正和多组学整合任务中表现优异,支持单细胞分辨率下的跨模态特征关联分析。其Python实现(https://simba-bio.readthedocs.io)为单细胞研究提供了统一框架,避免了碎片化分析流程,同时为未来新型单细胞数据的分析奠定了基础。
2025-08-21 07:15:00
1016
原创 【论文阅读】SIMBA: single-cell embedding along with features(2)
SIMBA是一种创新的图嵌入方法,能够将单细胞及其特征共同嵌入共享潜在空间。该方法通过构建细胞与特征(基因、染色质区域、DNA序列等)的关联图,实现多模态数据整合分析。实验表明,SIMBA在scRNA-seq分析中能准确分离细胞类型并将标记基因定位到相应细胞群附近;在scATAC-seq分析中可识别调控元件和转录因子结合位点;在多组学整合中能推断基因调控网络。相比现有方法,SIMBA提供了统一框架支持细胞异质性分析、标记物发现和调控推断,且不依赖聚类或特征选择。该工具已实现为Python库,为单细胞研究提供
2025-08-20 12:39:37
1337
原创 【每天一个知识点】主调控因子(Master Regulator)
摘要:主调控因子是位于基因调控网络顶层的核心转录因子,具有决定性调控作用(如Myod1、p53)。其特征包括层级控制、广泛下游效应和疾病相关性。在单细胞组学中,通过SCENIC等方法识别主调控因子,可揭示细胞命运决定机制和疾病治疗靶点。该概念为理解细胞分化和疾病发生提供了关键理论框架。
2025-08-20 11:35:36
202
原创 【每天一个知识点】基尼指数(Gini Index)
基尼指数是衡量数据集不纯度的指标,表示随机抽取两个样本类别不一致的概率。其取值范围0-1,0表示完全纯净,1表示最混杂,二分类在50%比例时达到最大值0.5。相比信息增益,基尼指数计算更简单,常用于CART决策树算法中,通过选择使基尼指数下降最多的特征进行节点分裂。该指标对大规模数据处理效率更高,且能避免信息增益偏向多类别特征的问题。
2025-08-19 13:25:07
255
原创 【论文阅读】SIMBA: single-cell embedding along with features(1)
摘要 SIMBA提出了一种创新的单细胞图嵌入方法,通过将细胞与多组学特征(基因、染色质区域、DNA序列等)共同嵌入共享潜在空间,克服了传统聚类依赖方法的局限性。该方法利用多关系图结构建模细胞-特征交互,支持无聚类标记物发现、基因调控推断、批次校正和多组学整合等任务。实验表明,SIMBA在scRNA-seq、scATAC-seq及多模态数据中的性能优于或匹配现有专用方法。其核心优势在于统一框架下的灵活图构建(如分箱编码表达值、跨批次边推断)和基于Softmax的特征对齐,最终生成的协同嵌入空间可直接支持生物学
2025-08-19 12:01:17
1258
原创 【每天一个知识点】OmicVerse
OmicVerse是一个基于Python的多组学分析框架,专注于RNA-seq数据处理(包括bulk、单细胞和空间转录组)。它整合了多样化的分析模块(如差异表达、细胞注释、轨迹分析等),提供统一的工作流程。创新性地引入BulkTrajBlend算法,通过β-VAE和图神经网络恢复scRNA-seq中遗漏的细胞类型。支持Python全流程操作,兼容Anndata数据结构,并可通过Conda/Pip便捷安装。其一体化设计简化了多组学分析,避免工具切换,提升研究效率。
2025-08-18 21:49:30
797
原创 【论文阅读】Single-cell assignment using multiple-adversarial domain adaptation network with large-scale r
SELINA是一个基于大规模单细胞转录组参考图谱的自动化细胞类型注释框架。该研究整合了136个数据集、170万细胞和230种人类细胞类型,构建了全面统一的参考图谱。SELINA创新性地采用多重对抗域自适应网络消除批次效应,结合合成少数类过采样技术提高稀有细胞检测能力,并通过自编码器实现查询数据与参考数据的精准匹配。在17个组织95个数据集上的验证表明,SELINA在注释准确性上显著优于现有工具,尤其在疾病环境下表现出色。该框架提供Python和R软件包,为单细胞RNA测序数据分析提供了完整的注释解决方案。
2025-08-18 21:12:38
1196
原创 【每天一个知识点】单细胞RNA-seq数据注释综述
单细胞RNA测序数据注释方法研究进展 单细胞RNA测序技术革命性地推进了生物学研究,但海量数据的注释分析面临重大挑战。当前主流注释方法包括:基于标记基因的传统方法、聚类与差异分析、参考图谱比对以及新兴的机器学习方法。虽然这些方法在细胞类型鉴定方面取得进展,但仍需解决批次效应、注释标准不统一、稀有细胞识别、疾病样本注释等关键问题。未来发展趋势将聚焦于构建统一参考图谱、多模态数据融合、生成模型应用等领域,推动单细胞注释向标准化、智能化方向发展,为精准医学提供更强大的技术支持。
2025-08-17 23:35:07
934
原创 【论文阅读】Adversarial Multiview Clustering NetworksWith Adaptive Fusion
本文提出了一种对抗性多视图聚类网络(AMvC),通过多视图编码器提取潜在表示,并利用生成对抗网络促进视图间一致性。主要创新包括:1)设计自适应融合层自动学习各视图权重以获得最优共享表示;2)引入ℓ₁,₂范数约束增强特征判别性;3)结合重构损失、对抗损失和聚类损失进行联合优化。在视频、图像和文本数据集上的实验表明,AMvC优于现有深度多视图聚类方法,且在大规模数据上具有良好扩展性。参数分析验证了模型的鲁棒性,特征可视化显示ℓ₁,₂范数能有效提升特征可区分性。
2025-08-16 00:49:35
997
原创 【每天一个知识点】时间序列聚类
时间序列聚类是一种按时间变化模式对数据进行自动分组的技术。与静态聚类不同,它通过分析数据的变化轨迹、节奏和周期性来识别相似模式,广泛应用于金融、医疗、工业等领域。主要方法包括:基于原始数据(如DTW距离)、基于特征提取(统计/频域特征)和基于模型(如ARIMA)三种传统路线,以及新兴的深度学习方法(自编码器、Transformer等)。典型流程包含数据预处理、相似度计算、聚类算法选择和结果评估等步骤。尽管面临高维计算、噪声干扰等挑战,时间序列聚类在投资分析、设备监测等场景展现出独特价值,未来将向可解释模型、
2025-08-15 11:53:14
910
原创 【每天一个知识点】生物的数字孪生
摘要:生物数字孪生是通过数字技术构建与真实生物体高度一致的虚拟模型,实现"虚实映射+实时互动+数据驱动预测"。其核心特征包括三维结构精准再现、动态生理状态模拟以及实时数据更新。关键技术涵盖多模态数据融合、多尺度建模与AI预测分析,在精准医疗、药物研发等领域具有重要应用价值。当前面临数据完整性、模型泛化、计算资源等挑战,同时需解决生物伦理问题。该技术为生物医学研究提供了新的数字化研究范式。
2025-08-14 23:56:53
391
原创 【每天一个知识点】云计算专业岗位分析
云计算已成为数字经济核心驱动力,广泛渗透各行业,市场规模年增速超20%。主要就业方向包括云平台运维、架构设计、服务开发、安全防护及解决方案等岗位,要求掌握Linux管理、虚拟化技术、编程开发等技能。职业发展路径分三个阶段:从基础运维到独立设计架构,最终成为行业解决方案专家。就业机会集中在互联网、金融等行业及一线城市,未来边缘计算、混合云等方向前景广阔。云计算人才需持续更新技术知识,强化业务理解,以适应行业快速发展需求。
2025-08-12 23:40:55
804
原创 【每天一个知识点】云存储
云存储是通过互联网将数据存储在远程服务器的服务,具有按需扩展、成本效益高等特点。主要分为对象存储(适合非结构化数据)、文件存储(层级目录结构)和块存储(高性能应用)三类,优势包括弹性扩展、高可用性和便捷协作,但也面临安全隐私、网络依赖和合规性等挑战。云存储适用于各类用户,但需根据需求选择合适类型并确保安全合规。
2025-08-11 23:37:19
573
原创 【每天一个知识点】深度领域对抗神经网络
DDANN是一种结合深度学习和领域自适应的神经网络,通过对抗训练实现跨域知识迁移。它包含特征提取器、任务分类器和域分类器三个核心组件,利用梯度反转层使模型学习域不变特征。该方法通过优化任务损失和对抗域损失的加权组合,有效解决源域与目标域数据分布差异问题,在图像分类、生物数据分析、语音识别和医学影像等领域具有广泛应用价值。
2025-08-10 21:28:19
512
原创 【论文阅读】Deep Adversarial Multi-view Clustering Network
【摘要】本文提出深度对抗多视图聚类(DAMC)网络,通过深度自编码器学习多视图数据的共享潜在表示,并引入对抗训练优化数据分布。模型包含多视图编码器、生成器、判别器和聚类层,结合自编码器损失、对抗损失和基于KL散度的聚类损失进行优化。实验表明,该方法在图像和文本数据集上优于现有多视图聚类算法,能有效处理复杂数据的非线性特性。主要创新点包括:1)深度网络建模视图间非线性相关性;2)视图专属判别器解耦潜在空间;3)聚类损失优化公共表示。
2025-08-10 21:16:43
1489
原创 【每天一个知识点】轨迹分析(Trajectory inference or Pseudotime analysis)
单细胞RNA测序中的轨迹分析是揭示细胞动态演化路径的关键方法,通过基因表达变化推断伪时间顺序,构建细胞状态转变轨迹。该方法广泛应用于发育、疾病进展和治疗应答等研究。主流工具包括Monocle3、Slingshot、PAGA等,支持不同分析需求。核心流程包含数据预处理、聚类、轨迹构建和可视化等步骤,通过伪时间和基因表达趋势图展示细胞演化路径。典型可视化采用UMAP背景图,标注起点、路径、分支和伪时间梯度来呈现细胞状态转变过程。
2025-08-09 07:00:00
402
原创 【每天一个知识点】Marker基因鉴定(Marker gene identification)
单细胞RNA测序中Marker基因鉴定是识别细胞类型特异性基因的关键步骤,通过差异表达分析(如Wilcoxon检验、t检验等方法)筛选显著上调基因(log2FC>0.25,p_adj<0.05)。常用工具包括Seurat(R)和Scanpy(Python),流程涵盖基因筛选、排序及可视化。鉴定结果可用于细胞注释、功能富集分析和轨迹推断,为后续研究提供重要依据。
2025-08-08 07:00:00
536
原创 【每天一个知识点】Heterogeneous Graph Transformer(HGT) 与 Graph Transformer Networks(GTN)的详细对比分析
HGT与GTN是两种异构图神经网络模型,主要区别在于:GTN(2019)通过可微图乘法自动组合元路径,再用GCN处理,适合路径组合不明确的场景;HGT(2020)采用类型感知的Transformer注意力机制,直接建模节点和边类型信息,适合需要精细控制信息传播的大规模任务。GTN结构简单、路径可解释,HGT建模能力更强、支持批处理训练。实际应用中,路径设计困难时选GTN,节点类型差异显著或需深层建模时选HGT。
2025-08-07 11:30:00
668
原创 【深度学习】Heterogeneous Graph Transformer (HGT)
Heterogeneous Graph Transformer (HGT) 是一种针对异构图的图神经网络模型,由Ziniu Hu等人在NeurIPS 2020提出。它通过类型感知的Transformer机制解决异构图中节点/边类型不一致的问题,为不同类型节点和边设计独立投影矩阵,利用多头注意力实现跨类型信息传递。相比GAT、HAN等模型,HGT能更好地建模类型语义差异,支持动态边权重学习,适用于学术网络、推荐系统等场景。论文提供了开源实现,模型通过类型特定的投影、边注意力计算和消息变换,实现了高效的异构图表
2025-08-07 07:00:00
825
原创 【深度学习】Graph Transformer Networks(GTN,图变换网络)
GraphTransformerNetworks(GTN)是一种用于异构图的深度学习模型,能自动学习元路径组合而非依赖人工设计。其核心是通过可学习的图变换操作,将原始多关系图组合成新邻接矩阵,再执行图卷积,适用于节点分类等任务。相比GCN/GAT,GTN支持异构图且自动构造路径,但计算成本较高。典型应用包括知识图谱和推荐系统。
2025-08-06 20:36:11
715
原创 【每天一个知识点】CITE-seq分析 与 scRNA-seq数据分析
CITE-seq与scRNA-seq数据分析对比 CITE-seq作为scRNA-seq的拓展技术,同时检测RNA和表面蛋白(ADT),形成多模态数据。相比单模态的scRNA-seq,CITE-seq在分析流程上需分别处理RNA和ADT数据,通过Seurat等工具实现双通道质控、归一化和降维。其核心优势在于结合蛋白表达提升细胞分型准确性,特别适用于免疫细胞亚群鉴定。分析工具如Seurat、TotalVI等支持多模态整合,使结果解读更精准。CITE-seq通过融合蛋白信息,有效解决了scRNA-seq中RNA
2025-08-06 07:00:00
807
原创 【教育教学】人才培养方案制定
摘要:人才培养方案(TTP)是应用型教育的系统性工程,涵盖教育目标设定、行业调研、课程设计、实践安排及评价机制等关键环节。方案制定需明确培养目标,开展行业调研与能力分析,构建模块化课程体系,强化实践教学与校企协同,并建立持续改进机制。重点包括:跨部门团队组建、OBE导向的课程设计、双师型师资建设、产教融合平台搭建,以及动态调整的反馈机制。最终形成包含课程结构图、教学进程表等标准化文档,经专家评审后实施,确保人才培养与产业需求精准对接。(148字)
2025-08-05 23:46:19
734
原创 【每天一个知识点】CITE-seq(Cellular Indexing of Transcriptomes and Epitopes by sequencing)技术
CITE-seq是一种整合单细胞转录组(scRNA-seq)和表面蛋白检测的多组学技术,通过抗体DNA条形码(ADT)实现同步分析。其核心流程包括:抗体标记、单细胞捕获、逆转录建库(mRNA和ADT双文库)及多模态数据分析。技术优势在于蛋白检测稳定性高,能补充RNA信号,显著提升免疫细胞分型精度。广泛应用于疾病模型、多组学整合及机器学习建模(如TotalVI)。相比REAP-seq、ECCITE-seq等技术,CITE-seq更成熟高通量,且可与ATAC-seq等组合。常用分析工具包括Seurat、scVI
2025-08-05 08:00:00
485
原创 【论文阅读】ACE: Explaining cluster from an adversarial perspective
本文提出了一种对抗聚类解释框架ACE,用于整合单细胞RNA测序分析中的三个关键步骤:降维、聚类和标记基因识别。传统方法独立执行这些步骤,忽略了非线性嵌入和基因间依赖关系。ACE通过神经网络化聚类过程,利用对抗扰动识别能够解释聚类差异的基因面板。该框架不仅能发现富集基因,还能识别在特定细胞类型中缺失的基因,以及区分相似细胞类型的差异基因。实验证明ACE可提取具有高区分性和低冗余性的基因集合,并可推广至图像识别等非生物领域。这一方法突破了传统标记基因的概念,为细胞群体分析提供了更全面的解释能力。
2025-08-04 23:19:49
1040
原创 【每天一个知识点】RAG还是微调?
RAG与微调的选择指南:RAG适合快速部署、动态知识更新和文档问答场景,优势在于低成本接入多源数据;微调则适用于风格化输出和复杂任务,能深度掌握知识但资源消耗大。实际应用中常采用混合模式(RAG+微调),前者提供扩展知识库,后者优化模型行为。决策需权衡数据特点、更新频率和资源投入,例如法律问答推荐RAG,而固定格式生成更适合微调。
2025-08-04 17:47:16
298
原创 【一天一个知识点】RAG遇见推理
"RAG遇见推理"探索了检索增强生成(RAG)框架与推理能力的融合。RAG通过检索外部知识增强生成能力,但缺乏系统推理。二者的结合可应用于司法推理、医疗诊断等场景,通过多跳检索、思维链提示等技术实现逻辑推演。未来研究包括推理数据集构建、多模态融合等方向,最终目标是让AI不仅能检索答案,还能给出逻辑解释。这一融合将提升大模型在复杂认知任务中的表现。
2025-08-02 23:40:45
424
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人