生物统计学(biostatistics)学习笔记(三)

本文是生物统计学学习笔记的第三章,主要讲解概率分布的概念和类型,包括概率基础知识,如必然事件、随机事件、加法定理和乘法定理;接着详细介绍了离散型变量的二项分布和泊松分布,以及连续型变量的正态分布、t分布、卡方分布和F分布。此外,还探讨了在只有一个总体和比较两个总体时的概率分布应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第三章概率分布

生物统计学最主要的任务是用样本统计数来推断其所属总体的参数

从同一总体中随机抽取样本,每次得到的样本不会完全相同,用不同样本去推断同一总体将得到不同的结论,如何判断这些结论的可靠性

•这些推断的基础是关于概率分布的基本知识,以及抽样分布。

概率基础知识

  1. •必然事件**(certain event),以U表示。**

  2. •不可能事件**(impossible event),以V表示。**

  3. •随机事件**(random event,简称事件),指在某些确定条件下,因为偶然因素的影响而可能出现也可能不出现的现象。**

  4. 和事件(sum event):A+B至少有一件事发生

  5. 积事件(product event):A·B多个事件同时发生

  6. 互斥事件(mutually exclusive event):A·B=V,不可能同时发生

  7. 对立事件(contrary event):A+B=U,A·B=V,必有一件事发生

  8. 完全事件系(complete event system):A1+A2+……+An=U,Ai·Aj=V(当i不等于j时),多个事件两两相斥

  9. 独立事件(independent event):两者毫无关系

  10. 加法定理P(A+B)=P(A)+P(B)-P(A·B)

  11. 乘法定理P(A·B)=P(A|B)·P(B)= P(B|A)·P(A)

  12. 频率(frequency):即某事件发生的次数除以重复试验次数

  13. 概率(probability):随着重复试验次数不断增大,某事件发生的频率越来越接近某一固定值p,p就定义为该事件发生的概率。(一般情况下,因为重复试验的次数是有限的,所以频率只是概率的一个近似值。

    频率是试验中真实观察到的概率,概率是理论上的频率。

    频率是样本的统计数,概率是总体的参数。

概率分布

概率分布**(probability distribution):**随机变量的取值与取这些值的概率之间的对应关系

离散型变量的分布:二项分布、泊松分布**……**

连续型变量的分布:正态分布、t分布、卡方分布、F分布

二项分布(binomial distribution):结果只有两种情况的事件组成的总体的概率分布试验具有重复性和独立性 在这里插入图片描述

泊松分布(poisson distribution):就是p值很小,但n值很大的特殊情况的二项分布
在这里插入图片描述

​ •泊松分布的平均数和方差均为λ。

​ •二项分布当p<0.1且np<5时,可以用泊松分布来近似计算。

​ •泊松分布的形状参数λ无限增大时,泊松分布接近正态分布。

正态分布(normal distribution):随机误差****一般服从正态分布
在这里插入图片描述

​ •该正态分布记为N(μ, σ2),其中μ是正态分布的平均数,σ是正态分布的标准差。

​ •变量落在 (μ-σ, μ+σ)范围内的概率是68.26%;

​ •变量落在(μ-2σ, μ+2σ)范围内的概率是95.45%。

​ μ决定f(x)的位置,μ增大,曲线右移。

​ σ决定f(x)的性状,σ增大,曲线越宽矮。

•P(-1.96<x<1.96)=0.95•P(-2.58<x<2.58)=0.99

生物统计学的研究包含两个过程:从总体抽取样本的过程,从样本统计数推断总体参数的过程

重置抽样也称“回置抽样”、“重复抽样”或“有放回的抽样”

若只有一个总体

u分布:当μ=0,σ=1时,N(0,1)被称为标准正态分布,又称为u分布,F(u)

t分布:不服从正态分布,服从自由度为n-1,是从平均数为μ,标准差未知的正态总体中,独立随机地抽取含量为n的样本产生的分布。

卡方分布:从平均数为μ,标准差为σ的正态总体中,独立随机地抽取k个含量为n的样本

​ •卡方分布的取值范围是0到正无穷;

​ •曲线不对称,峰值偏左(特别在df=1时,曲线以y轴为渐近线)。

​ •随着自由度df增大,卡方分布趋于左右对称直至正态分布。

若需要比较两个总体

两个样本平均数差的平均数等于两个总体平均数的差;

两个样本平均数差的方差等于两个样本平均数的方差的和。

•在已知总体方差时,u检验可以用于比较总体平均数。

•在已知样本方差时,t检验可以用于比较总体平均数。

若两个总体的标准差已知
在这里插入图片描述

•当σ1与σ2相等时,F可以简化为两个样本方差的比值。

•F检验可以用于比较总体的方差。

•F分布的取值范围是0到正无穷;

•F分布的平均数趋向1;

•曲线不对称**,峰值偏左(特别在df1=1或2时,曲线以y轴为渐近线)。**

•曲线性状仅取决于df1和df2。

image-20220320203841717

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cling5899

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值