又添新将!Facebook开源深度学习堆栈的三大新成员

Facebook的FAIR团队开源了三个新框架:Polygames,一个用于策略游戏深度学习代理训练的框架;PyTorch3D,一个3D环境深度学习库;HiPlot,一个高维数据交互式可视化工具。Polygames基于零学习,支持多种策略游戏,PyTorch3D优化了3D操作与渲染,而HiPlot则助力高维数据探索。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全文共2809字,预计学习时长8分钟

图源:Google

微软、谷歌、Facebook、亚马逊、Uber等科技巨擘的研究部门为人工智能(AI)领域的开源框架做出了众多贡献,这些贡献结合了他们内部解决方案中已大规模测试过的堆栈以及其研究实验室内一些非常先进的思想。

虽然世界最大的科技公司们能积极为开源深度学习贡献一己之力,这无疑让人兴奋,但这也让数据科学家们很难跟上该领域的新进展。

今天要介绍的是Facebook人工智能研究(FAIR)团队上个月开源的三个新版本。这对快速增长的趋势会有何影响呢?

FAIR团队总会时不时为深度学习领域研究和开源框架做贡献。从Pythorch到ONNX,FAIR团队为简化深度学习应用程序工具做了巨大贡献。在过去的几周里,FAIR团队新添加了三个开源框架。

 

Polygames

Polygames是一个开源的研究框架,其通过自演的方式来训练策略游戏中的深度学习代理。Polygames基于众所周知的零学习概念,使代理通过与环境的交互来控制环境,且无需预设任何训练。

乍一看,Polygames似乎类似于Alpha Zero或ELF OpenGo等其他游戏学习框架,但FAIR堆栈在这个领域出了自己的一份力。对于初学者,Polygames支持更多样的策略游戏,如Hex、Havannah、minihogi、Connect6、minesweaver等等,这为研究人员测试深度学习代理提供了更广阔的空间。

此外,Polygames扩展了传统的零学习概念,它采用了一种结合深层神经网络和Monte Carlo Tree搜索方法的巧妙架构,该架构使代理推广到更多的任务环境下。

Polygames有一个意想不到的好处——由代理产生的神经可塑性。Polygames的模型是递增的——此框架附带了一个用于添加新的层和通道或增加内核宽度的脚本——它们能够进行启动热身训练,允许神经网络在训练过程中不断增长。

从编程模型的角度来看,Polygames提供了一个包含游戏的库,以及一个实施用户个人游戏的单一文件API。开发人员的经验基于PyTorch,其结果相对容易上手。

FAIR团队凭借Polygames实现了多个里程碑,包括在Hex19的比赛中击败了顶尖真人玩家。由诗人和数学家皮埃特·海因(Piet Hein)和经济学家兼数学家约翰·纳什(John Nash)于20世纪40年代创造的六连棋游戏挑战了人类传统的游戏思考过程。

该游戏规则很简单,即黑白棋依次填充空白格。如果黑棋连接了南北则黑棋获胜;而如果白棋连接了东西,则白棋胜。公平起见,游戏加设了一个规则:在第二步,第二个玩家可以决定是否交换颜色。

该游戏的难点在于作为一个连接游戏,是否能赢需要的是大局观,而非依靠局部来判断。

经过一系列实验,Polygames能够在此游戏中击败人类的顶尖玩家,结果如下图所示(真人玩家使用的是白棋)。第一个图像表示六连棋开始。在游戏第二阶段,真人(白棋)似乎要赢了,因为东西方分别有两组坚挺的白棋,并且看起来彼此接近。然而,Polygames在中间制造一个相当复杂的区域,扭转了局势。

Polygames打开了局面,并找到了使用两个可能的路径之一的组合来获胜。

 

 

PyTorch3D

PyTorch3D是一个用于在3D环境中训练深度学习代理的框架。尽管在现实世界中需要大量的视觉智能系统,但在三维环境中训练这类智能体的工具和框架仍然受到很大限制。PyTorch3D是一个高度模块化并优化过的库,具有能简化3D深度学习的独特功能。

PyTorch3D为快速可辨的3D数据提供了一组常用的3D操作符和丢失函数,同时其也提供了一个模块化、可辨的渲染API,使研究人员能够立即将这些函数导入到当前最先进的深度学习系统中。

PyTorch3D借鉴了3D深度学习最新的几个里程碑,例如FAIR的MeshR-CNN实现了从复杂内部空间图像中完整重建3D对象。该框架还借鉴了高度优化二维识别库后将物体理解成功推广到三维的Detectron2。

PyTorch3D用于处理旋转和3D变换的函数也是创建C3DPO的核心。C3DPO是一种使用较少注释训练数据就能学习图像和3D形状间关联的新方法。

PyTorch3D一些主要贡献有:

· 用于存储和操作三角形网格的数据结构:PyTorch3D将三维表示存储在称为Meshes的数据结构中。这种数据结构使研究人员能够轻易将底层网格数据快速转换为不同的视图,用最有效的数据表示来匹配运算符。

· 三角网格上的高效操作:PyTorch3D包括优化几种常用运算符和3D数据丢失函数的工具、支持异构批量输入等一系列操作。这意味着研究人员和工程师可以在PyTorch3D中导入操作符以更快实验,而无需在每个新项目开始时重新创建这些操作符。

· 一个可辨的网格渲染器:PyTorch3D包括一个模块化可辨渲染器。我们的工具由可组装单元格构成,使用户轻松扩展渲染器以自定义照明或着色效果。

 

 

HiPlot

探索高维数据是深度学习程序的挑战之一。HiPlot是一个交互式可视化工具,帮助人工智能研究人员探索在高维数据中使用平行图和其他图形来表示信息的关联和模式。HiPlot运用了一种并行图技术,该技术能够使可视化和过滤高维数据更便捷。

从功能角度来看,HiPlot与其他可视化工具一样有几个优点:

· 互动性:在HiPlot中,并行图是交互式的,这使改变不同用例的可视化变得简单。例如,用户可将重点放在沿一个或多个轴获取范围或值、根据另一个轴设置颜色方案、重新排序删除轴以及提取特定数据的实验。

· 简单:使用HiPlot只需要几行代码。通过一个带有“hiplot”命令的服务器,用户即可通过一个给定的URL访问,并使用它来可视化、管理和共享用户的实验。

· 基于群体训练的可视化:HiPlot提供了一种简单的方法来将基于群体训练的实验可视化,以不同数据点之间的边构成XY图。这种可视化在深度学习实验中极其常见。

 

Facebook的FAIR团队在深度学习领域继续创新,并为开源社区做出积极贡献。PyTorch3B、Polygames和HiPlot都是FAIR的最新贡献,旨在简化深度学习应用程序的工具。

一起分享AI学习与发展的干货

欢迎关注全平台AI垂类自媒体 “读芯术”

(添加小编微信:dxsxbb,加入读者圈,一起讨论最新鲜的人工智能科技哦~)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值