基于Raft解决“幽灵复现”问题

本文介绍了Raft算法如何处理日志恢复和避免幽灵复现问题。当新Leader当选,它会追加Noop日志确保未提交的日志在多数节点确认后变为提交,防止数据丢失或读取未提交数据。同时,Raft通过确保新Leader写入当前Term的日志来消除幽灵复现,确保一致性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3.1 关于Raft日志恢复

首先,我们聊一下Raft的日志恢复,在 Raft 中,每次选举出来的Leader一定包含已经Committed的数据(抽屉原理,选举出来的Leader是多数中数据最新的,一定包含已经在多数节点上Commit的数据),新的Leader将会覆盖其他节点上不一致的数据。虽然新选举出来的Leader一定包括上一个Term的Leader已经Committed的Log Entry,但是可能也包含上一个Term的Leader未Committed的Log Entry。这部分Log Entry需要转变为Committed,相对比较麻烦,需要考虑Leader多次切换且未完成Log Recovery,需要保证最终提案是一致的,确定的,不然就会产生所谓的幽灵复现问题。

因此,Raft中增加了一个约束:对于之前Term的未Committed数据,修复到多数节点,且在新的Term下至少有一条新的Log Entry被复制或修复到多数节点之后,才能认为之前未Committed的Log Entry转为Committed。

为了将上一个Term未Committed的Log Entry转为Committed,Raft 的解决方案如下:

Raft算法要求Leader当选后立即追加一条Noop的特殊内部日志,并立即同步到其它节点,实现前面未Committed日志全部隐式提交。

从而保证了两个事情:

  • 通过最大Commit原则保证不会丢数据,即是保证所有的已经Committed的Log Entry不会丢;

    </
### Raft 光流算法的代码实现与教程 RAFT (Recurrent All-Pairs Field Transforms) 是一种高效的光流估计方法,其通过循环神经网络(RNN),特别是门控循环单元(GRU),来迭代地改进光流场的预测。这种方法能够有效地捕捉长时间依赖关系并提高准确性。 #### 代码实现 RAFT 的官方 PyTorch 实现可以在 GitHub 上找到[^2]: ```bash git clone https://github.com/princeton-vl/RAFT.git cd RAFT pip install -r requirements.txt ``` 安装完成后,可以通过运行预训练模型来进行推理测试: ```python import torch from raft import RAFT from utils.utils import InputPadder model = torch.nn.DataParallel(RAFT()) model.load_state_dict(torch.load('models/raft-things.pth')) model.eval() image1 = load_image(imfile1) image2 = load_image(imfile2) padder = InputPadder(image1.shape) image1, image2 = padder.pad(image1, image2) _, flow_up = model(image1, image2, iters=20, test_mode=True) ``` 这段代码展示了如何加载预训练好的 RAFT 模型以及执行两张图像之间的光流估计过程。 #### 教程资源 对于希望深入了解 RAFT 工作原理的研究者来说,建议阅读原始论文《RAFN: Recurrent All Pairs Field Transforms for Optical Flow》及其附带的技术报告。这些资料提供了关于该算法设计决策背后理论基础的重要见解。 此外,在线平台如 YouTube 和 Medium 上有许多由开发者分享的经验贴和技术博客,它们通常会提供更直观的理解方式,并可能包含额外的小技巧或优化建议。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值