60.View the Exhibit and examine the structure of CUSTOMERS table.

本文解析了一个复杂的SQL查询语句,解释了NOT LIKE、BETWEEN及NOT BETWEEN等条件的有效性和执行方式,并通过实例验证了这些条件的正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

60.View the Exhibit and examine the structure of CUSTOMERS table.
Evaluate the following query:
SQL>SELECT cust_id, cust_city FROM customers WHERE 
cust_first_name NOT LIKE 'A_%g_%' AND
cust_credit_limit BETWEEN 5000 AND 15000 AND
cust_credit_limit NOT IN (7000, 11000) AND
cust_city NOT BETWEEN 'A' AND 'B';

Which statement is true regarding the above query?


A.It executes successfully.
B.It produces an error because the condition on the CUST_CITY column is not valid.
C.It produces an error because the condition on the CUST_FIRST_NAME column is not valid.
D.It produces an error because conditions on the CUST_CREDIT_LIMIT column are not valid.
答案:A
A:正确
B:错误

cust_city NOT BETWEEN 'A' AND 'B',这种是进行的ascii进行的判断,比如

SQL> select 1 from dual where 'B' between 'A' and 'C';

         1
----------

         1

‘B' between ’A' and ‘C'  相当于  ’B' >= 'A' and  'B' <='C'

在比如

SQL> select 1 from dual where 'ABC' between 'A' and 'C';

         1
----------
         1

SQL> select 1 from dual where 'CBA' between 'A' and 'C';


no rows selected

第一个有结果而第二个没有,这是因为‘ABC' 首字母为A,和between 的开头A相等,因此开始判断第二个字母,由于between开始的字符 没有第二个字母所以符合

第二个没有结果是因此,第一个为C和and的C相等,然后 判断第二个,第二个为B ,但是and的C没有第二个字符结果给大了

SQL> select 1 from dual where 'CBA' between 'A' and 'CC';


         1
----------
         1

这个就符合了,因此B<C



C:错误

cust_first_name NOT LIKE 'A_%g_%',这种匹配的是A开头,然后任意字符中间有个g,然后是任意字符,比如
SQL> select 1 from dual where 'Awwwwwgwwww' LIKE 'A_%g_%';


         1
----------
         1
D:错误

如果残差序列展示出显著的自相关性,意味着ARIMA模型未能完全捕捉到数据中的相关信息,存在一些系统性的模型误差。 自相关性表示残差序列中的一个观测值与之前的观测值之间存在相关性。当残差序列中的自相关性是显著的时,说明模型中可能存在一些未建模或未捕捉到的时间相关结构。这可能是由于模型未能适应数据中的季节性、趋势性或其他周期性变化,或者因为模型的阶数选择不合适。 显著的自相关性可能会导致模型的预测不准确,因为残差序列中的相关性会影响到模型对未来值的预测。在这种情况下,需要进一步调整模型,可能需要增加更多的滞后项或使用其他更复杂的时间序列模型来更好地捕捉数据中的相关信息。 为了解决残差序列中的自相关性,可以尝试进行以下操作: 1. 调整模型的阶数:增加AR、MA或差分阶数,以更好地适应数据中的相关结构。 2. 引入季节性:如果数据中存在季节性变化,可以考虑使用季节性ARIMA模型(SARIMA)。 3. 检查数据:检查数据是否存在异常值、缺失值或其他异常情况,这些因素可能导致模型的自相关性。 4. 考虑其他模型:如果ARIMA模型无法解决自相关性问题,可以尝试其他类型的时间序列模型,如GARCH模型或神经网络模型。 综上所述,显著的自相关性表明ARIMA模型未能完全适应数据的相关结构,需要进一步调整模型或尝试其他模型来提高预测的准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值