洛谷 NOIP 2023 模拟赛 个人总结

种树

nnn 个数,和 kkk,每次可以把 x(x∣k)x(x\mid k)x(xk) 乘到一个数,然后 k←kxk\gets\frac kxkxk,求所有数的约数个数乘积的最大值。n,k,ai≤104n,k,a_i\le10^4n,k,ai104
一开始考虑分解 aia_iai,对每个质因子单独考虑,发现每次加在质因子最少的那个数最优,于是用了个优先队列维护这个数,大概8点40分写完过了大样例,然后静态检查了5min,就去看T2了。

汪了个汪

棋盘上有 nnn 行,第 iiiiii 个格子。你要在格子填 1∼n1\sim n1n,满足:

  • 每行第一个数互不相同
  • 所有在行上相邻的两个数所组成的无序对互不相同
  • 每行的数互不相同

n≤4000n\le4000n4000

看到无序对要挤满整个棋盘,感觉条件很苛刻,又尝试构造无果,就打了 dfs 暴力去找规律,感觉构造的方案中可能有对称性,但是对称性不够,也没看出什么规律,去看 T3。

题解的构造方法是 x,x+1,x−1,x+2,x−2,…x,x+1,x-1,x+2,x-2,\dotsx,x+1,x1,x+2,x2,

挑战 NPC IV

定义 f(i)=1+log⁡2(lowbit⁡(i))f(i)=1+\log_2(\operatorname{lowbit}(i))f(i)=1+log2(lowbit(i)),对于排列 ppp,它的优美度为 ∑1≤i≤j≤n∑k=ijf(pk)\sum_{1\le i\le j\le n}\sum\limits_{k=i}^jf(p_k)1ijnk=ijf(pk)。对于 n!n!n! 个本质不同的排列,求第 kkk 小的优美度。n≤1018,k≤min⁡(1018,n!)n\le10^{18},k\le\min(10^{18},n!)n1018,kmin(1018,n!)

没什么思路,发现优美度是 ∑i=1nf(pi)i(n−i+1)\sum\limits_{i=1}^nf(p_i)i(n-i+1)i=1nf(pi)i(ni+1),就贪心把 fff 最小的与 i(n−i+1)i(n-i+1)i(ni+1) 最大的放在一起暴力。

题解用了个拼盘,n≥29n\ge29n29 时,第 kkk 小等价与最小。而 n<29n<29n<29,用 dpdpdp 求方案数。

四暗刻单骑

Alice 和 Bob 各有一个数 x,yx,yx,y,牌堆有 nnn 个数,Alice 和 Bob 轮流取牌堆上的数,然后选择手上的一个数打出,若一方的两个数相同获胜,mmm 次询问,问当取 [l,r][l,r][l,r] 当牌堆时,谁会赢。n,m,k≤2×105n,m,k\le2\times10^5n,m,k2×105

看了数据范围,想了20pts 的 dp 开始打,打了1h过了大样例,又手造了小数据,还有 x=yx=yx=y4pts4pts4pts,打了分块去维护。后面就没思路了,时间也不多了,开始检查。

题解是数据结构不会。

总结

期望得分:100+10+12+24=146pts

实际得分:64+10+12+20=106pts

T1挂分了,原因是分解质因数时,下标超过了最大的质数个数,枚举的 pip_ipi 变成 000,模 000 RE了。这次算是长了个教训,解决方法是筛质数的范围开大一点或每次限制每个下标的范围。T2,T3 都不能深入分析问题,其实分析出 n≥29n\ge29n29,答案求最小值是不难的。

总结:这套题感觉与NOIP的风格很像,题目有质量。在正式考试中要严格执行考试策略,写完一道题不论难度都要打对拍,造大小极端数据,后面骗多少部分分都比不上会的题不挂分。希望教练多放这种风格的题目。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值