torch.norm求范数函数
import torch
a=torch.tensor([[1,2,3],[-1,1,4]],dtype=torch.float)
print(a.norm(p=1))#计算各个元素绝对值的和
print(torch.norm(a,p=1,dim=1))#指定维度,横向计算各个元素绝对值的和
print(torch.norm(a,p=1,dim=0))#纵向计算各个元素绝对值的和
输出
tensor(12.)
tensor([6., 6.])
tensor([2., 3., 7.])
max函数统计最大值
a=torch.tensor([[1,2,3],[-1,1,4]],dtype=torch.float)
print(a.max(),a.min(),a.mean())#返回最大值,最小值,平均值
print(a.argmax())#返回最大值的索引,默认打平为1维
print(a.argmax(dim=1))#指定维度,返回每一行最大值的索引
print(a.max(dim=1,keepdim=True))#指定维度,返回每一行最大值的索引和最大值
#输出结果会丢失维度,keepdim=True保留原来张量的维度
print(a.topk(2,dim=1))#较max方法,topk可以返回n多个较大值和其索引
输出
tensor(4.) tensor(-1.) tensor(1.6667)
tensor(5)
tensor([2, 2])
torch.return_types.max(
values=tensor([[3.],
[4.]]),
indices=tensor([[2],
[2]]))
torch.return_types.topk(
values=tensor([[3., 2.],
[4., 1.]]),
indices=tensor([[2, 1],
[2, 1]]))
a=torch.tensor([[1,2,3],[-1,1,4]],dtype=torch.float)
print(torch.eq(a,a))#判断两个张量是否相等
print(a>0)#判断元素与0的关系
输出
tensor([[True, True, True],
[True, True, True]])
tensor([[ True, True, True],
[False, True, True]])