tensor属性统计

 torch.norm求范数函数

import torch
a=torch.tensor([[1,2,3],[-1,1,4]],dtype=torch.float)
print(a.norm(p=1))#计算各个元素绝对值的和
print(torch.norm(a,p=1,dim=1))#指定维度,横向计算各个元素绝对值的和
print(torch.norm(a,p=1,dim=0))#纵向计算各个元素绝对值的和

输出

tensor(12.)
tensor([6., 6.])
tensor([2., 3., 7.])

 max函数统计最大值

a=torch.tensor([[1,2,3],[-1,1,4]],dtype=torch.float)

print(a.max(),a.min(),a.mean())#返回最大值,最小值,平均值
print(a.argmax())#返回最大值的索引,默认打平为1维
print(a.argmax(dim=1))#指定维度,返回每一行最大值的索引
print(a.max(dim=1,keepdim=True))#指定维度,返回每一行最大值的索引和最大值
#输出结果会丢失维度,keepdim=True保留原来张量的维度
print(a.topk(2,dim=1))#较max方法,topk可以返回n多个较大值和其索引

输出

tensor(4.) tensor(-1.) tensor(1.6667)
tensor(5)
tensor([2, 2])
torch.return_types.max(
values=tensor([[3.],
        [4.]]),
indices=tensor([[2],
        [2]]))
torch.return_types.topk(
values=tensor([[3., 2.],
        [4., 1.]]),
indices=tensor([[2, 1],
        [2, 1]]))

 a=torch.tensor([[1,2,3],[-1,1,4]],dtype=torch.float)

print(torch.eq(a,a))#判断两个张量是否相等
print(a>0)#判断元素与0的关系

输出

tensor([[True, True, True],
        [True, True, True]])
tensor([[ True,  True,  True],
        [False,  True,  True]])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值