超分辨全息配置与三维积分成像显示技术解析
1. 超分辨全息配置
在超分辨全息配置中,我们得到成像物体的表达式为 (O (x) = ΔTA∗a),此式保留了物体的振幅和相位信息。对于 1000 帧记录的模拟重建结果如图所示,图中重建振幅图像的噪声模式与重建过程相关,且依赖于帧数。
从模拟结果计算相位重建的相对误差,并展示在图中。该误差是对图像所有像素求平均,结果表明,即使只有 100 帧,误差也可低至 0.5%,且随着帧数增加迅速减小,这说明使用金属纳米粒子能非常准确地重建物体相位。
随机纳米粒子掩模编码还有其他应用,以联合变换相关器(JTC)为例,它可在全光设置中计算两个函数的卷积或相关性。其设置过程如下:
- 记录滤波器 :准直光束入射到位于透镜 L1 焦平面的两个物体 (h_1)、(h_2) 上,在透镜后焦平面放置记录介质。
- 获取输出 :用准直光束照射记录的透明片,透明片位于透镜 L2 焦平面,在透镜后焦平面获取输出。
使用金属纳米粒子随机掩模时,纳米粒子靠近物体 (h_1) 放置,具有不同相位。平面 (x_1) 处的场可表示为:
(U_1(x_1, t) = h_1(x_1 - X/2) g (x_1 - X/2, t) + h_2(x_1 + X/2))
在透镜 L1 后焦平面,场的傅里叶变换为:
(U_2(x_2, t) = \frac{1}{\lambda f} H_1(\frac{x_2}{\lambda f}) \otimes G(\frac{x_2}{\lambda f}, t) e^{-j\pi x_2