多维成像与被动偏振成像技术解析
1. 多维成像基础
1.1 矩阵旋转与斯托克斯向量
在光学领域,矩阵 $MR$ 能将斯托克斯向量绕光轴旋转角度 $\theta$。其表达式为:
[
MR(\theta) =
\begin{bmatrix}
1 & 0 & 0 & 0 \
0 & \cos 2\theta & \sin 2\theta & 0 \
0 & -\sin 2\theta & \cos 2\theta & 0 \
0 & 0 & 0 & 1
\end{bmatrix}
]
这个穆勒矩阵在处理旋转坐标系中元素的相互作用时非常有用。例如,一个与水平方向成 $\theta$ 角旋转的线性二向色衰减器的穆勒矩阵为 $MR(-\theta)MD(ph, pv)MR(\theta)$。
1.2 庞加莱球
庞加莱球是可视化偏振态随系统参数变化的有用工具。庞加莱坐标系由斯托克斯参数 $S1$、$S2$ 和 $S3$ 组成。绘制在球上的斯托克斯向量经过归一化处理,使得 $S0 = 1$,并且只有完全偏振光($P = 1$)才能在这个表面上表示。球上一点的经度是从正 $S1$ 轴测量的取向角的两倍,纬度是从 $S1$、$S2$ 平面测量的椭圆率角的两倍。
2. 偏振反射与发射
2.1 反射
当波长小于 3μm 时,物体的偏振特征主要由其表面或表面附近的反射和散射决定。表面反射通常通过菲涅耳定律在统计意义上应