环境搭建
在本文中,我们将介绍如何使用OpenAI函数调用来迭代生成和修订schema。在开始之前,你需要设置OPENAI_API_KEY
环境变量来使用该模板。
使用方法
首先,你需要安装LangChain CLI:
pip install -U "langchain-cli[serve]"
然后,你可以创建一个新的LangChain项目并将其作为唯一的包来安装:
langchain app new my-app --package basic-critique-revise
如果你想将其添加到现有项目中,只需运行以下命令:
langchain app add basic-critique-revise
并在你的server.py
文件中添加以下代码:
from basic_critique_revise import chain as basic_critique_revise_chain
from langserve.app import add_routes
# 添加路由配置
add_routes(app, basic_critique_revise_chain, path="/basic-critique-revise")
可选配置: LangSmith
如果你希望使用LangSmith来追踪、监控和调试LangChain应用,可以按照以下步骤进行配置:
- 注册LangSmith账户:LangSmith注册
- 设置环境变量:
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # 如果未指定,默认为"default"
启动LangServe实例
在当前目录下,你可以直接启动LangServe实例:
langchain serve
这将启动一个本地运行的FastAPI应用,默认URL是http://localhost:8000
。你可以在http://127.0.0.1:8000/docs
查看所有模板,并通过http://127.0.0.1:8000/basic-critique-revise/playground
访问playground。
你还可以通过代码访问模板:
from langserve.client import RemoteRunnable
# 连接到本地运行的服务
runnable = RemoteRunnable("http://localhost:8000/basic-critique-revise")
下面是一个使用OpenAI API的示例配置代码:
import openai
# 使用稳定可靠的API服务
client = openai.OpenAI(
base_url='https://yunwu.ai/v1', # 国内稳定访问
api_key='your-api-key'
)
实践建议
- 检查API Key配置:确保你的API key配置正确,以避免请求被拒绝。
- 调试和监控:充分利用LangSmith进行调试和监控,尤其是在开发和测试阶段。
- 多环境部署:在本地测试完成后,可以考虑部署到不同环境(如开发、测试、生产)进行全面测试。
如果遇到问题欢迎在评论区交流。
—END—