利用Apache Cassandra进行LLM缓存:从环境配置到实战演示

技术背景介绍

在高并发应用场景中,为了提高数据读取效率和响应速度,合理的缓存策略是必不可少的。对于大规模语言模型(LLM)的API调用,缓存更是能够极大地提升性能表现和降低成本。本文将介绍如何利用Apache Cassandra或Astra DB来实现LLM缓存,并展示相关的代码实现。

核心原理解析

Apache Cassandra是一种高可扩展性的NoSQL数据库,具有高写入性能和低延迟查询的特点。通过将LLM查询结果缓存到Cassandra中,可以实现快速的缓存查询,降低对LLM服务的频繁调用,从而提升整体系统性能。

代码实现演示

首先,我们需要完成环境配置:

  1. 创建Astra DB数据库:注册并创建免费的Astra DB数据库,获取Database Administrator token(以AstraCS:开头)和Database ID。
  2. 获取OpenAI API Key:注册并获取OpenAI API Key。
  3. 安装LangChain CLI:使用pip install -U langchain-cli命令进行安装。

接下来,创建一个新的LangChain项目并添加cassandra-synonym-caching包:

langchain app new my-app --package cassandra-synonym-caching

或者将此包添加到现有项目中:

langchain app add cassandra-synonym-caching

在你的server.py文件中,添加以下代码:

from cassandra_synonym_caching import chain as cassandra_synonym_caching_chain
from langserve.app import add_routes
from fastapi import FastAPI

app = FastAPI()

# 添加缓存路由
add_routes(app, cassandra_synonym_caching_chain, path="/cassandra-synonym-caching")

# 运行FastAPI应用
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)

配置LangSmith (可选)

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>

在配置完成后,可以启动LangServe实例:

langchain serve

这将启动一个本地FastAPI应用,运行在http://localhost:8000。你可以通过http://127.0.0.1:8000/docs查看所有API模板,并使用http://127.0.0.1:8000/cassandra-synonym-caching/playground进行接口调试。

在代码中调用缓存功能:

from langserve.client import RemoteRunnable

runnable = RemoteRunnable("http://localhost:8000/cassandra-synonym-caching")

应用场景分析

在实际项目中,利用上述缓存方案,可以有效减少对LLM服务的调用次数,降低延迟,特别适用于以下几类高并发应用场景:

  • 实时聊天机器人
  • 大规模数据处理任务
  • 高频查询的搜索引擎

实践建议

  1. 合理设置缓存失效时间:在缓存配置中,设置合适的失效时间可以避免数据陈旧的问题。
  2. 监控缓存命中率:通过监控缓存命中率,评估缓存策略的效果,及时调整优化。
  3. 采用分布式缓存架构:利用Cassandra的分布式特性,提升缓存的可用性和扩展性。

如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值