技术背景介绍
在高并发应用场景中,为了提高数据读取效率和响应速度,合理的缓存策略是必不可少的。对于大规模语言模型(LLM)的API调用,缓存更是能够极大地提升性能表现和降低成本。本文将介绍如何利用Apache Cassandra或Astra DB来实现LLM缓存,并展示相关的代码实现。
核心原理解析
Apache Cassandra是一种高可扩展性的NoSQL数据库,具有高写入性能和低延迟查询的特点。通过将LLM查询结果缓存到Cassandra中,可以实现快速的缓存查询,降低对LLM服务的频繁调用,从而提升整体系统性能。
代码实现演示
首先,我们需要完成环境配置:
- 创建Astra DB数据库:注册并创建免费的Astra DB数据库,获取Database Administrator token(以AstraCS:开头)和Database ID。
- 获取OpenAI API Key:注册并获取OpenAI API Key。
- 安装LangChain CLI:使用
pip install -U langchain-cli
命令进行安装。
接下来,创建一个新的LangChain项目并添加cassandra-synonym-caching
包:
langchain app new my-app --package cassandra-synonym-caching
或者将此包添加到现有项目中:
langchain app add cassandra-synonym-caching
在你的server.py
文件中,添加以下代码:
from cassandra_synonym_caching import chain as cassandra_synonym_caching_chain
from langserve.app import add_routes
from fastapi import FastAPI
app = FastAPI()
# 添加缓存路由
add_routes(app, cassandra_synonym_caching_chain, path="/cassandra-synonym-caching")
# 运行FastAPI应用
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
配置LangSmith (可选)
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>
在配置完成后,可以启动LangServe实例:
langchain serve
这将启动一个本地FastAPI应用,运行在http://localhost:8000
。你可以通过http://127.0.0.1:8000/docs
查看所有API模板,并使用http://127.0.0.1:8000/cassandra-synonym-caching/playground
进行接口调试。
在代码中调用缓存功能:
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/cassandra-synonym-caching")
应用场景分析
在实际项目中,利用上述缓存方案,可以有效减少对LLM服务的调用次数,降低延迟,特别适用于以下几类高并发应用场景:
- 实时聊天机器人
- 大规模数据处理任务
- 高频查询的搜索引擎
实践建议
- 合理设置缓存失效时间:在缓存配置中,设置合适的失效时间可以避免数据陈旧的问题。
- 监控缓存命中率:通过监控缓存命中率,评估缓存策略的效果,及时调整优化。
- 采用分布式缓存架构:利用Cassandra的分布式特性,提升缓存的可用性和扩展性。
如果遇到问题欢迎在评论区交流。
—END—