# 使用LangChain加载和处理WeChat聊天记录
WeChat的聊天记录一直以来都难以直接导出,这给后续的分析或模型的微调带来了挑战。然而,为了帮助您处理有限数量的消息,我们可以使用一个自定义的聊天记录加载工具,将复制粘贴的WeChat消息转换为LangChain消息格式。
## 技术背景介绍
LangChain是一款兼容多种聊天记录格式的开源工具,支持将聊天记录转换为可用于模型微调或样例选择的消息格式。而WeChat的消息导出功能有限,我们可以借鉴LangChain的Discord聊天记录加载方法,自定义一个WeChat消息加载器。
## 核心原理解析
通过将WeChat消息复制至文本文件,并利用正则表达式解析文件中的消息内容,我们可以构建一个自定义的聊天记录加载器。该加载器能够将消息转换为LangChain的`HumanMessage`和`AIMessage`格式,并进行后续处理,如消息合并和AI消息转换。
## 代码实现演示(重点)
以下是完整的代码实现过程:
### 1. 创建消息转储
首先,在WeChat桌面应用中选择需要的消息并复制,然后将其粘贴到本地计算机上的文本文件中,如下所示:
```python
%%writefile wechat_chats.txt
女朋友 2023/09/16 2:51 PM
天气有点凉
男朋友 2023/09/16 2:51 PM
珍簟凉风著,瑶琴寄恨生。嵇君懒书札,底物慰秋情。
女朋友 2023/09/16 3:06 PM
忙什么呢
男朋友 2023/09/16 3:06 PM
今天只干成了一件像样的事
那就是想你
女朋友 2023/09/16 3:06 PM
[动画表情]
2. 定义聊天记录加载器
定义一个自定义的WeChatChatLoader
来解析文本文件中的消息:
import logging
import re
from typing import Iterator, List
from langchain_community.chat_loaders import base as chat_loaders
from langchain_core.messages import BaseMessage, HumanMessage
logger = logging.getLogger()
class WeChatChatLoader(chat_loaders.BaseChatLoader):
def __init__(self, path: str):
self.path = path
self._message_line_regex = re.compile(
r"(?P<sender>.+?) (?P<timestamp>\d{4}/\d{2}/\d{2} \d{1,2}:\d{2} (?:AM|PM))",
)
def _append_message_to_results(
self,
results: List,
current_sender: str,
current_timestamp: str,
current_content: List[str],
):
content = "\n".join(current_content).strip()
if not re.match(r"\[.*\]", content): # 跳过贴纸和图片等非文本消息
results.append(
HumanMessage(
content=content,
additional_kwargs={
"sender": current_sender,
"events": [{"message_time": current_timestamp}],
},
)
)
return results
def _load_single_chat_session_from_txt(
self, file_path: str
) -> chat_loaders.ChatSession:
with open(file_path, "r", encoding="utf-8") as file:
lines = file.readlines()
results: List[BaseMessage] = []
current_sender = None
current_timestamp = None
current_content = []
for line in lines:
if re.match(self._message_line_regex, line):
if current_sender and current_content:
results = self._append_message_to_results(
results, current_sender, current_timestamp, current_content
)
current_sender, current_timestamp = re.match(
self._message_line_regex, line
).groups()
current_content = []
else:
current_content.append(line.strip())
if current_sender and current_content:
results = self._append_message_to_results(
results, current_sender, current_timestamp, current_content
)
return chat_loaders.ChatSession(messages=results)
def lazy_load(self) -> Iterator[chat_loaders.ChatSession]:
yield self._load_single_chat_session_from_txt(self.path)
3. 创建加载器
初始化WeChatChatLoader
并指向我们刚刚创建的文本文件:
loader = WeChatChatLoader(
path="./wechat_chats.txt",
)
4. 加载消息
加载并转换消息为LangChain格式:
from typing import List
from langchain_community.chat_loaders.utils import (
map_ai_messages,
merge_chat_runs,
)
from langchain_core.chat_sessions import ChatSession
raw_messages = loader.lazy_load()
merged_messages = merge_chat_runs(raw_messages) # 合并同一发送者的连续消息
messages: List[ChatSession] = list(map_ai_messages(merged_messages, sender="男朋友")) # 转换为AI消息
5. 后续处理和应用
将转换后的消息用于模型微调或直接预测:
from langchain_openai import ChatOpenAI
llm = ChatOpenAI()
for chunk in llm.stream(messages[0]["messages"]):
print(chunk.content, end="", flush=True)
应用场景分析
该方法适用于需要快速处理少量WeChat消息的场景,例如为特定的语言模型进行微调或进行语言分析。
实践建议
通过使用LangChain的消息转换功能,您可以有效地处理WeChat聊天记录并应用于AI模型的微调和预测。此外,可以考虑对代码进行扩展,以支持更多的消息类型和格式。
如果遇到问题欢迎在评论区交流。
---END---