写在前面
本系列文章主要讲解结构力学中阻尼的来源及数学理论的相关知识,希望能帮助更多的同学认识和了解结构力学中的阻尼。
若有相关问题,欢迎评论沟通,共同进步。(*^▽^*)
当我们敲击由玻璃或金属制成的碗时,会听到清脆的音调而且声音强度会随时间变化而逐渐衰减。理论上,如果不存在阻尼,这种音调将永远不会消失。实际上,碗中产生的动能和弹性势能会通过不同的物理过程转换为其他形式的能量。本篇文章中,我们将讨论如何用数值的方法表示阻尼,以及在振动结构中产生阻尼的物理现象。
1. 如何定量计算阻尼
阻尼最明显的一个表现形式是自由振动时其振幅会产生衰减,例如敲击碗时的声音。振幅的衰减率取决于阻尼的大小。通常,振幅随时间呈指数下降。当一个周期内损失的能量与周期本身的振幅成正比时,就是这种情况。
图 1 一个“会唱歌的碗”
首先,对于具有黏性阻尼且无外部负载的单自由度(DOF)系统,可以用下面的运动方程描述:
除以质量m后,方程的归一化形式通常写为:
这里,w0是无阻尼的固有频率,ζ 称为阻尼比。
为了使运动为周期性,阻尼比必须限制在以下范围内:0≤ζ<1。该系统中自由振动的幅度将随以下因子衰减:
其中,T0是无阻尼振动的周期。
图 2 三个不同的阻尼比值,自由振动会衰减
另一种情况,是使用对数衰减,δ 是连续两个峰的振幅之比的对数。