精确词汇的形式推理
1. 形式推理概述
形式推理是对特定主题的普通或专业推理的一种表示,前提是实际推理能够转化为一个可进行演算的框架。进行形式推理首先需要一个合适的数学框架,该框架要与待转化的推理类型相匹配,尽可能准确地再现推理过程。也就是说,要根据实际情况的特征,确定基本属性或定律,确保涉及的术语在符号化转化到框架中时,所选符号和它们之间的定律能忠实反映其在实际推理中的含义。因此,对于每种特定类型的推理,框架应尽可能“自然”或合适。
形式推理实际上是对某种特定专业推理的数学模型,并非只有一种形式推理,而是有多种数学模型。对于每种专业推理形式,要求所建模内容的语义能很好地转化到相应的数学模型中,这就需要根据实际和外部推理及其上下文来确定表示框架的内部定律。科学用人工语言将用科学概念以自然语言思考的、被认为对相应主题和形式化推理至关重要的内容进行浓缩。
下面将考虑使用精确词汇推理、使用精确和不精确词汇推理的模型。形式推理主要指数学形式化的演绎推理,在前两种情况下也会涉及一些关于普通推理的提示。需要注意的是,在这三种情况下,相应的推理关系由满足传递律的偏序表示,否定通常被假定为强否定,即满足((p’)’ = p)。
2. 精确词汇经典推理的数学框架
经典的精确词汇推理的数学框架是集合论,即布尔代数结构,这由马歇尔·斯通(Marshall Stone)在1936年的布尔代数特征定理所表明。该框架源于“规范公理”,在这个公理下,在论域(X)中起作用的精确词汇(P)指定了(X)的一个子集,该子集由满足“(x)是(P)”的(x)组成,其补集包含那些“(x)是(P)”不成立的(x),陈述只能为真或为假。
在这种情况下,翻译语言中的