Inferencing with Mixtral 8x22B on AMD GPUs — ROCm Blogs
2024年5月1日,由 Clint Greene撰写。
简介
自从Mistral AI’s AI发布了Mixtral 8x7B以来,专家混合(MoE)在AI社区重新获得了关注。受此发展启发,多个AI公司陆续推出了基于MoE的模型,包括xAI的Grok-1、Databricks的DBRX和Snowflake的Artic。与相同规模的密集模型相比,MoE架构具备一些优势,包括更快的训练时间、加快的推理速度和在基准测试中的性能提升。该架构由两个部分组成。第一部分是稀疏的MoE层,用以替代典型Transformer架构中的密集前馈网络(FFN)层。每个MoE层包含特定数量的专家,通常这些专家本身就是FFN。第二部分是一个路由网络,决定哪些tokens发送到哪些专家。由于每个token仅被路由到一部分专家,推理延迟显著缩短。
Mixtral 8x22B是一个稀疏的MoE解码器仅变换器模型。它与Mixtral 8x7B共享相同的架构,不同之处在于增加了头数、隐藏层数和上下文长度。对于每一个token,在每一层,路由网络选择2个专家进行处理,并使用加权和来组合它们的输出。因此,Mixtral 8x22B总共有141B参数,但每个token仅使用39B参数,以类似39B模型的速度和成本进行输入处理和输出生成。此外,Mixtral 8x22B在标准行业基准测试如MMLU上表现优异,提供了出色的性能与成本比。
如果想深入了解MoE和Mixtral 8x22B,我们推荐阅读Mixture of Experts Explained 和MistralAI的论文Mixtral of Experts 。
Prerequisites
运行此博客之前,您需要以下条件:
-
AMD GPUs: 请参阅