洛谷 P2082 区间覆盖

本文深入解析了一种求解区间覆盖总长的算法,通过将区间排序并遍历,有效地计算了所有区间中整数点的个数。文章提供了详细的算法步骤和C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题面

已知有N个区间,每个区间的范围是[si,ti],请求出区间覆盖后的总长。

分析

题意其实是这样的。。。给出那个区间,计数所有区间中整数点的个数(而非线段)

搞清楚这点后就比较简单了,先对输入的区间排序,x按升序,y按降序(即同一个x下一般只有第一个y会计算,后面的是前面的子集)
当新加入一条区间时,可能有如下几种

上一条线段的右端点,与新加入的线段无交集,此时直接计算新线段中的点数加入ans即可,并把lastr更新到next的r


lastr>=nextl,此时会有交点(即使等于,也会有一个点的重复),并且nextr>lastr(保证有部分可计算),此时要计算的是从lastr的下一个点到nextr为止,并更新lastr


lastr>=nextl,且nextr<=lastr,没有新增点,跳过即可(lastr也不用更新)

代码

#include "cstdlib"
#include <iostream>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
struct seg {
	long long l, r;
}a[100005];
bool cmp(seg s1, seg s2)
{
	if (s1.l < s2.l)return true;
	else if (s1.l == s2.l) {
		if (s1.r > s2.r)return true;
		else return false;
	}
	else return false;
}
int main()
{
	ios::sync_with_stdio(false);
	int n;
	cin >> n;
	for (int i = 0; i < n; i++)cin >> a[i].l >> a[i].r;
	sort(a, a + n, cmp);
	long long ans = 0;
	long long lastr=0;
	for (int i = 0; i < n; i++)//处理a[i],实际上是计数点的数量
	{
		if (a[i].l <= lastr) {//上一个的r落在这一个l的左边,有公共部分
			if (a[i].r > lastr) { ans += a[i].r - lastr;lastr = a[i].r; }
		}
		else
		{
			ans += a[i].r - a[i].l+1;
			lastr = a[i].r;
		}
	}
	cout << ans;
	return 0;
}
### 关于动态规划 (Dynamic Programming, DP) 的解决方案 在解决洛谷平台上的编程问题时,尤其是涉及动态规划的题目,可以采用以下方法来构建解决方案: #### 动态规划的核心思想 动态规划是一种通过把原问题分解为相对简单的子问题的方式来求解复杂问题的方法。其核心在于存储重复计算的结果以减少冗余运算。通常情况下,动态规划适用于具有重叠子问题和最优子结构性质的问题。 对于动态规划问题,常见的思路包括定义状态、转移方程以及边界条件的设计[^1]。 --- #### 题目分析与实现案例 ##### **P1421 小玉买文具** 此题是一个典型的简单模拟问题,可以通过循环结构轻松完成。以下是该问题的一个可能实现方式: ```cpp #include <iostream> using namespace std; int main() { int n; cin >> n; // 输入购买数量n double p, m, c; cin >> p >> m >> c; // 输入单价p,总金额m,优惠券c // 计算总价并判断是否满足条件 if ((double)n * p <= m && (double)(n - 1) * p >= c) { cout << "Yes"; } else { cout << "No"; } return 0; } ``` 上述代码实现了基本逻辑:先读取输入数据,再根据给定约束条件进行验证,并输出最终结果[^2]。 --- ##### **UOJ104 序列分割** 这是一道经典的区间动态规划问题。我们需要设计一个二维数组 `f[i][j]` 表示前 i 次操作后得到的最大价值,其中 j 是最后一次切割的位置。具体实现如下所示: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 5e3 + 5; long long f[MAXN], sumv[MAXN]; int a[MAXN]; int main(){ ios::sync_with_stdio(false); cin.tie(0); int n,k; cin>>n>>k; for(int i=1;i<=n;i++)cin>>a[i]; for(int i=1;i<=n;i++)sumv[i]=sumv[i-1]+a[i]; memset(f,-0x3f,sizeof(f)); f[0]=0; for(int t=1;t<=k;t++){ vector<long long> g(n+1,LLONG_MIN); for(int l=t;l<=n;l++)g[l]=max(g[l-1],f[t-1][l-1]); for(int r=t;r<=n;r++)f[r]=max(f[r],g[r]+sumv[r]*t); } cout<<f[n]<<'\n'; return 0; } ``` 这段程序利用了滚动数组优化空间复杂度,同时保持时间效率不变[^3]。 --- ##### **其他常见问题** 针对更复杂的路径覆盖问题(如 PXXXX),我们往往需要结合一维或多维动态规划模型加以处理。例如,在某些场景下,我们可以设定 dp 数组记录到达某一点所需最小代价或者最大收益等指标[^4]。 --- ### 总结 以上展示了如何运用动态规划技巧去应对不同类型的算法挑战。无论是基础还是高级应用场合,合理选取合适的数据结构配合清晰的状态转换关系都是成功解决问题的关键所在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值