Spark(21) -- Spark SQL -- DataFrame

本文详细介绍了Spark SQL中的DataFrame概念,包括DataFrame的性质、Schema信息、Row对象的使用,以及如何从RDD转换为DataFrame的两种方法。通过案例展示了从JSON、Parquet和CSV文件读取数据到DataFrame的过程,强调了DataFrame在大数据处理中的高效性和易用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 DataFrame它不是Spark SQL提出来的,而是早期在R、Pandas语言就已经有了的。就易用性而言,对比传统的MapReduce API,说Spark的RDD API有了数量级的飞跃并不为过。然而,对于没有MapReduce和函数式编程经验的新手来说,RDD API仍然存在着一定的门槛。另一方面,数据科学家们所熟悉的R、Pandas等传统数据框架虽然提供了直观的API,却局限于单机处理,无法胜任大数据场景。为了解决这一矛盾,Spark SQL 1.3.0在原有SchemaRDD的基础上提供了与R和Pandas风格类似的DataFrame API。新的DataFrame AP不仅可以大幅度降低普通开发者的学习门槛,同时还支持Scala、Java与Python三种语言。更重要的是,由于脱胎自SchemaRDD,DataFrame天然适用于分布式大数据场景。

1. DataFrame是什么

在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。
在这里插入图片描述
使得Spark SQL得以洞察更多的结构信息,从而对藏于DataFrame背后的数据源以及作用于DataFrame之上的变换进行针对性的优化,最终达到大幅提升运行时效率。反观RDD,由于无从得知所存数据元素的具体内

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

erainm

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值