
HBase
文章平均质量分 92
erainm
一直在学习,未曾敢止步……
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Kafka -- 从基础到高级
1、为什么有消息系统 1、解耦合 2、异步处理 例如电商平台,秒杀活动。 一般流程会分为: 1:风险控制、2:库存锁定、3:生成订单、4:短信通知、5:更新数据 通过消息系统将秒杀活动业务拆分开,将不急需处理的业务放在后面慢慢处理; 流程改为: 1:风险控制、2:库存锁定、3:消息系统、4:生成订单、5:短信通知、6:更新数据 3、流量的控制 3.1 网关在接受到请求后,就把请求放入到消息队列里面 3.2 后端的服务从消息队列里面获取到请求,完成后续的秒杀处理流程。然后再给用户返回结果。 优点:控制了流量原创 2021-04-19 11:27:24 · 5209 阅读 · 11 评论 -
聊聊常用树结构
1.二叉搜索树 2.平衡二叉树 3.红黑树 4.B树 5.B+树 6.LSM树原创 2020-09-13 20:32:22 · 402 阅读 · 0 评论 -
解决HBase运行MapReduce问题之Could not locate Hadoop executable: xxxx\bin\winutils.exe
配置以下环境变量 HADOOP_HOME=< your local hadoop-ver folder > 在PATH环境变量中添加:%HADOOP_HOME%\bin 将winutils-master\hadoop-3.2.1\bin中的所有内容复制到HADOOP_HOME\bin目录中 可以从cdarlint下载,GitHub中 重启IDEA,重新运行MapReduce程序 引用 https://github.com/cdarlint/winutils ...原创 2020-09-14 12:25:46 · 258 阅读 · 0 评论 -
聊聊布隆过滤器
1. 简介 客户端:这个key存在吗? 服务器:不存在/不知道 本质上,布隆过滤器是一种数据结构,是一种比较巧妙的概率型数据结构。它的特点是高效地插入和查询。但我们要检查一个key是否在某个结构中存在时,通过使用布隆过滤器,我们可以快速了解到「这个key一定不存在或者可能存在」。相比于传统的List、Set、Map这些数据结构,它更加高效、占用的空间也越少,但是它返回的结果是概率性的,是不确切的。 布隆过滤器仅用于测试集合中的成员资格。使用布隆过滤器的经典示例是减少对不存在的密钥的昂贵磁盘(或网络)查找。正原创 2020-09-13 21:31:41 · 391 阅读 · 0 评论