Labelme

文章讲述了作者在使用LabelMe打开自动生成的标签文件时遇到的错误,问题集中在imagePath的不同、换行符格式(CRLFvsLF)以及路径设置上。通过逐一排查,发现路径问题和换行符不一致是关键因素,最终解决了问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

提示:这里可以添加本文要记录的大概内容:

今天使用LabelMe 打开生成的标签文件,一直提示 “打开文件发生错误”。


提示:以下是本篇文章正文内容,下面案例可供参考

一、遇到问题

在这里插入图片描述

二、排查问题

1.分析问题

一般出现类似的问题,首先考虑是生成的标注文件是否和labelme 软件生成的文件格式是否一致。
lebelme 自动生成的标签文件自动生成的标注文件

2.验证问题

2.1对比两者,格式是一致的,唯一不同之处是imagePath 不一样,labelme 生成的是图片的名称,不包含路径;而自动生成的是完整路径的图片名称。

将自动生成的标签文件路径改成只有图片名称。测试问题依然存在,排除暂时排除路径问题。

2.2再次思考两者的不同点,查看两者的空白显示是否一致

自动生成
labelme 生成
对比两者缩进和换行符不一致,修改成一致后,测试还是不对。

CRLF 和 LF 是两种不同的换行符号:

1. CRLF(Carriage Return Line Feed)是回车换行符,在ASCII码中用十进制表示为13, 10,即  `\r\n` 。在Windows操作系统中,文本文件的换行符通常是CRLF,即回车换行符。
   
2. LF(Line Feed)是换行符,在ASCII码中用十进制表示为10,即  `\n` 。在类Unix系统(如Linux、macOS等)中,文本文件的换行符通常是LF,即换行符。

在不同的操作系统和应用程序中,对换行符的处理方式可能会有所不同。因此,当在不同系统间传输文本文件时,可能会遇到换行符不一致的问题。

dos2uinx地址

将dos2uinx 的目录添加到系统环境,需要重启生效
cd 到需要转换的目录下
for /R %G in (*.json) do unix2dos "%G"

2.3 路径导致的

从最开始去除路径的问题,到再次回归到路径的问题。原因在于第一次labelme 软件生成的标签文件是和图片在同一个路径下面的,而自动生成的标签的路径却和图片不在同一个文件夹内。所以即使修改成相同的路径,仍然会报上面的错误。将imagePath 的路径修改成和图片一致后,再次放入到图片的同一个目录下,问题解决。


总结

山穷水尽疑无路,柳暗花明又一村。在实际排查问题的时候,会有许多情况。一一排除后,问题迎刃而解。

05-20
### Labelme 工具的安装与使用指南 #### 一、Labelme 的简介 Labelme 是一款功能强大的图像标注工具,支持多种标注模式,包括矩形框、多边形、线条和点等。它适用于语义分割实例分割以及其他计算机视觉任务中的数据准备阶段。 --- #### 二、Labelme 的安装方法 以下是几种常见的 Labelme 安装方式: 1. **基于 Ubuntu 系统的安装** 在 Ubuntu 环境下,可以通过以下命令之一来安装 Labelme: ```bash sudo apt-get install labelme ``` 或者通过 Python 的包管理器 `pip` 来安装: ```bash sudo pip3 install labelme ``` 如果希望使用独立可执行版本,则可以从官方 GitHub 发布页面下载预编译好的二进制文件[^1]: - 下载地址:https://github.com/wkentaro/labelme/releases 2. **Windows 系统上的安装** 对于 Windows 用户,推荐使用 Anaconda 创建虚拟环境并安装 Labelme。具体步骤如下: - 打开 Anaconda Prompt 并创建一个新的 Conda 虚拟环境: ```bash conda create -n labelme_env python=3.8 conda activate labelme_env ``` - 接着,在激活的环境中运行以下命令以安装 Labelme: ```bash pip install labelme ``` 更详细的安装指导可以参考小白快速上手教程[^3]。 --- #### 三、Labelme 的基本使用流程 为了高效利用 Labelme 进行图像标注,通常需要遵循以下几个核心环节: 1. **准备工作** 需要先准备好待标注的数据集,并将其存放在指定路径中。一般情况下,会涉及以下三个子目录结构的构建: - ImageSets 文件夹用于存储索引列表; - JPEGImages 存放原始图片; - SegmentationClass 则保存对应的标签掩码信息。 2. **启动 Labelme GUI 应用** 成功安装后,可以直接在终端输入以下指令启动图形界面应用: ```bash labelme ``` 3. **导出标注结果** 当完成一系列图像的手动标记之后,可能还需要进一步处理这些标注成果以便后续训练模型之需。例如,如果目标框架接受的是 COCO 数据格式而非原生 JSON 形式的话,那么就需要借助额外脚本来实现转换操作。此时就可以运用到前面提到过的两个实用转化工具——`labelme2coco.py` 和 `labelme2voc.py`[^2]。 4. **自动化批量转换** 假设已经获取到了由 Labelme 输出的一组标准 JSON 文件集合,现在想要把它们全部转变为适配特定深度学习库所需的另一种通用表达形式(比如 MS-COCO),则只需按照下面给出的例子调用相应函数即可达成目的[^4]: ```python import argparse from labelme2coco import get_coco_from_labelme_json parser = argparse.ArgumentParser(description="Convert Labelme to Coco format.") parser.add_argument("--input_dir", help="Path where the input json files are located.", required=True) parser.add_argument("--output_path", help="Filepath of output coco file.", default="./annotations.json") args = parser.parse_args() # Convert and save as a new .json file. get_coco_from_labelme_json(args.input_dir, args.output_path) ``` --- #### 四、常见问题解答 - Q: 如何解决无法正常加载插件的问题? A: 可能是因为缺少某些依赖项或者版本冲突引起的错误;建议重新审视整个安装过程,确保每一步都严格按照文档说明执行完毕后再试一次。 - Q: 是否存在其他类似的替代品可供选择呢? A: 类似的工具有很多种,像 VGG Image Annotator(VIA),RectLabel For Mac OS X ,MakeSense.ai 等都是不错的选择方案,可以根据个人喜好挑选最适合自己的那款产品去尝试一下吧! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值