由题意可知,桌子上有n张卡,每个卡有k个不同的属性,每种属性只有0、1、2三种价值,
三张卡称为good当且仅当三张卡的每种属性的价值要么全一样要么全不同,每种属性之间相互独立,五张卡称为Meta-set当且仅当有大于1种可能三张卡称为good
通过Meta-set需要满足的条件可知,五张卡之间最多有两组good,其中一张卡被两组共用。
那么这一张卡的贡献(假设这张卡数量为x)就是x*(x-1)/2(一张卡要被两个不相同的组共用),所以只需要找出这张卡即可,可用map存这张卡对应的数量就可算出答案
AC代码:
#include <bits/stdc++.h> using namespace std; using LL = long long; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int n, k; cin >> n >> k; vector<vector<int>> a(n + 1, vector<int> (k + 1)); for (int i = 1; i <= n; i++) { for (int j = 1; j <= k; j++) { cin >> a[i][j]; } } LL ans = 0; map<vector<int>, int> mp; function<vector<int>(vector<int>, vector<int>, int)> calc = [](vector<int> x, vector<int> y, int k) { vector<int> z(k + 1); for (int i = 1; i <= k; i++) { z[i] = (6 - x[i] - y[i]) % 3; } return z; }; for (int i = 1; i < n; i++) { for (int j = i + 1; j <= n; j++) { mp[calc(a[i], a[j], k)]++; } } for (int i = 1; i <= n; i++) { ans += 1ll * (mp[a[i]] - 1) * mp[a[i]] / 2; } cout << ans << '\n'; return 0; }