范德蒙德卷积

∑i=0k(ni)(mk−i)=(n+mk) \sum_{i=0}^k \binom{n}{i}\dbinom{m}{k-i}=\binom{n+m}{k} i=0k(in)(kim)=(kn+m)

可以理解为在大小分别为 n,mn,mn,m 的两个堆中共取 kkk 个物品,枚举在两个堆中各取了多少个。

根据 (mi)=(mm−i)\dbinom{m}{i}=\dbinom{m}{m-i}(im)=(mim) 可以得到许多推论:
∑i=1n(ni)(ni−1)=(2nn+1)∑i=0n(ni)2=(2nn)∑i=0m(ni)(mi)=(n+mm)⋯ \begin{aligned} \sum_{i=1}^n\binom{n}{i}\binom{n}{i-1}&=\binom{2n}{n+1}\\ \sum_{i=0}^n\binom{n}{i}^2&=\binom{2n}{n}\\ \sum_{i=0}^m\binom{n}{i}\binom{m}{i}&=\binom{n+m}{m}\\ &\cdots \end{aligned} i=1n(in)(i1n)i=0n(in)2i=0m(in)(im)=(n+12n)=(n2n)=(mn+m)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值