∑i=0k(ni)(mk−i)=(n+mk) \sum_{i=0}^k \binom{n}{i}\dbinom{m}{k-i}=\binom{n+m}{k} i=0∑k(in)(k−im)=(kn+m)
可以理解为在大小分别为 n,mn,mn,m 的两个堆中共取 kkk 个物品,枚举在两个堆中各取了多少个。
根据 (mi)=(mm−i)\dbinom{m}{i}=\dbinom{m}{m-i}(im)=(m−im) 可以得到许多推论:
∑i=1n(ni)(ni−1)=(2nn+1)∑i=0n(ni)2=(2nn)∑i=0m(ni)(mi)=(n+mm)⋯
\begin{aligned}
\sum_{i=1}^n\binom{n}{i}\binom{n}{i-1}&=\binom{2n}{n+1}\\
\sum_{i=0}^n\binom{n}{i}^2&=\binom{2n}{n}\\
\sum_{i=0}^m\binom{n}{i}\binom{m}{i}&=\binom{n+m}{m}\\
&\cdots
\end{aligned}
i=1∑n(in)(i−1n)i=0∑n(in)2i=0∑m(in)(im)=(n+12n)=(n2n)=(mn+m)⋯